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Abstract 

We extend the analysis of queueing systems for real-life situations where the arrival 

pattern of customers is unknown. In real systems, we must understand how the choice of 

a method of estimation influences the configuration of the system. Using kernel 

smoothing, we evaluate algorithms to estimate performance measures of a GI
X
/M/c/N 

system, including the invariant probability distribution of the number of customers in the 

system, the blocking probability, the average queue size, and the average client queue 

time. We successfully apply the method to the calls from a calling center to plan and 

improve the performance of these important queueing systems. 

Keywords: Statistics, kernel estimator, performance evaluation. 

 

1. Introduction 

There is a large practical interest in investigating the behavior of general-arrival queueing 

systems, namely those of GI
X
/M/c/N type, because when managing real queueing systems 

the behavior of the arrival process generally is not known a priori. In Kendall (1951) 

notation, in these queueing systems the inter-arrival times are independent and do not 

follow any specific distribution (GI). The service times follow a Markov process 

(exponential time). We have c identical servers working in parallel and a maximum 

capacity of N users that are simultaneously allowed in the system, including those in 

service. Finally, X is a random variable representing the size of group (bulk) arrivals. 
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mailto:gregorio@est.ufmg.br
mailto:fcruz@est.ufmg.br
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Such queueing systems could be used in situations where we have relative control over 

how the servers work, but we do not know beforehand how the customers arrive at the 

system. 

Naturally, the mathematical model depends on the type of queueing system considered, 

and there are several methods to obtain such models. The most widely used methods are 

those that attempt to explain the density functions of inter-arrival and service times by 

means of parametric statistical models. Nevertheless, real data rarely fit well into 

parametric models; instead they often produce intractable models. Exact results for 

performance evaluation of Markovian and some simple general queueing systems are 

know (e.g., Gross & Harris, 1985), but such systems are rarely found in real life. 

Kalashnikov (1994) has warned that ―many parts of the theory of queues were developed 

as a ‗pure science‘ with no practical application‖. Bareche & Aïssani (2008) assert that 

real systems are ―generally very complicated, so their analysis cannot lead to analytical 

results or it leads to complicated results which are not useful in practice‖. 

An alternative approach is using nonparametric methods to study queueing systems. 

Nonparametric methods that use kernel smoothing have received much attention lately 

(Lima & Atuncar, 2010). Kernel estimators provide a simple way of finding structure in 

data sets without imposing a specific parametric model (Wand & Jones, 1995), which 

gives us flexibility to handle virtually any data set. There is extensive literature 

discussing queueing systems (Allen, 1990) and kernel smoothing (Wand & Jones, 1995) 

as separate concepts but virtually no study has brought the two concepts together. 

The contribution of this paper is twofold. First, we develop algorithms to calculate 

performance measures of queueing systems where the density of the inter-arrival time is 

determined by kernel estimators. Second, we evaluate the performance of these 

algorithms as a function of the kernel estimator, the smoothing window, the intensity 

rate, and the system size. We also present a study case in a call center that illustrates the 

usefulness of the method. 

First we present a literature review about queueing systems and kernel estimators as well 

as the fundamental concepts required to understand the proposed queueing system model. 

We also discuss the use of kernel estimators, the chosen models, and the issue of 
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selecting the smoothing parameter. Then, we describe how we estimated system 

performance and present the comparative results of simulations with the different 

methods discussed. We then apply our methods to a call center case and end with our 

main conclusions and some ideas for future work in the area. 

2. Literature Review and Fundamental Concepts 

2.1 Previous Works 

There are many situations in real life where queues occur and queueing models may be 

helpful. Recently, queueing models have been used successfully in manufacturing 

processes (Andriansyah et al., 2010; Dimitriou & Langaris, 2010; Smith et al., 2010); 

transportation (Cruz et al. 2010b); airports, ports, and product distribution systems 

(vanWoensel et al., 2008); computer and telecommunication systems (Tang et al., 2010; 

Cruz et al., 2010a); call center modeling (Jouini et al., 2010); and the analysis of health 

systems (Osorio & Bierlaire, 2008). Queues may cause the quality of the services or the 

prices of the goods to rise or fall, depending on their efficiency (vanWoensel & Cruz, 

2009), which may be estimated by means of the mathematical tools developed in 

queueing theory. 

As we mentioned earlier, there is not much literature that incorporates both general 

arrival queueing systems and kernel smoothing. Takács (1962) analyzed a closed solution 

for various systems that have non-specific distributions, including some multiserver 

queues such as GI/M/c and M/G/c. Hokstad (1975) established some closed form results 

to the GI/M/c/N system. Chaudhry & Templeton (1983) analyzed various types of queue 

with bulk arrivals. Vijaya Laxmi & Gupta (2000) defined the linear equations needed to 

solve the GI
X
/M/c/N system. Zhao (2004) proposed a closed form solution for the 

GI
X
/M/c system, and Bareche & Aïsani (2008) proposed a method to evaluate the 

proximity of GI/M/1 and M/M/1 systems when the density of the inter-arrival time is 

estimated by kernel estimators. 

Concerning kernel smoothing, Wand & Jones (1995) introduced general fundamental 

concepts. Regarding the issues related to the asymmetry of the random variable under 

analysis (e.g., non-negativity), Zhang et al. (1999) proposed a boundary corrected kernel 

estimator based on pseudodata generation, transformation, and reflection around the Y-
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axis. Chen (2000) proposed the use of a gamma kernel to avoid boundary problems 

present in certain situations. Scaillet (2004) studied the application of other asymmetric 

kernels. Bouezmarni & Scaillet (2005) were concerned about the consistency of these 

asymmetrical estimators. For recent developments in the area of kernel smoothing and a 

thorough literature review, see Atuncar et al. (2008) and Lima & Atuncar (2010). 

2.2 The GI
X
/M/c/N Model with Partial Blocks 

Vijaya Laxmi & Gupta (2000) described a generalization of the system GI/M/c when 

customers arrive in groups of size X with P(X = i) = gi (i ≥ 1) and mean E(X) = g . Let Bn 

be the number of clients who were served between the arrival of the nth customer and its 

successor. Therefore, the number of clients the nth customer finds in the system at the 

arrival, Yn, would depend on Xn and Bn, such that    nnnn BXYY 1 . Because Yn+1 

depends only on Yn, Bn, and Xn but not on Yn-1, Yn-2, and so on, the stochastic process {Yn} 

is a first order Markov Chain. 

The GI
X
/M/c/N is a finite capacity system such that a customer that arrives to the 

saturated system is refused with a probability that we will call PBL, or partial blocks. This 

refers to the case in which an arrival group of a size greater than the remaining spots in 

the system is partially denied according to the number of the remaining vacancies until 

the system is complete. 

Vijaya Laxmi & Gupta (2000) report that when the traffic intensity rate   cg  is 

smaller than 1, this Markov Chain has an invariant probability distribution of 

,2,1,0),(lim   kkYP nnk  associated with the number of clients an arbitrary 

customer finds in the system at arrival. The k ‘s are often called pre-arrival 

probabilities. 

Pre-arrival probabilities can be determined by the following system of linear equations: 

,
0





N

j

jjkk p   

for k = 0, 1, 2, ..., N-1, and 
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where pjk are named transition probabilities such that 
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where jki  , Nj  , Nk  , )(, zkij  is the serving probability of (j – k + i) clients 

under the assumption of the inter-arrival time zn  , and (z) is the inter-arrival time 

distribution. We shall analyze how )(, zkij  behaves. 

When cij   and ck  , there will be more clients than the servers can handle in the 

entire interval. Because the service process is Markovian, we can treat the server group 

as a single unit that serves customers at a rate zc  and a Poisson distributed transition 

probability: 
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When cij  , all clients within the system are being serviced and only k customers will 

remain in the system to time z. Knowing that the probability of a service time greater 

than z is ze  , we can describe this transition probability as a Binomial distribution: 

  .1)(,

kijzzk

kij ee
k

ij
z



 






 
   

When j + i ≥ c and k < c, there will be (j + i – c) customers waiting and c customers being 

served at the beginning of the interval, but (c – k) spots at the end. Let y be the interval 

ending immediately before (j + i – c+1) clients are served. If each service time is 

exponentially distributed with a rate cμ, then y is gamma distributed with a shape (j + i – 

c+1) and rate a cμ. The other c customers will be served in a time (z – y) and only k will 

remain. The transition probability of this subinterval will follow a Binomial distribution 

with success probability 
)( yze 
. The values )(, zkij  can be obtained by the 

convolution of these two variables: 
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Therefore, we can get the transitions probabilities given by Vijaya Laxmi & Gupta 

(2000) when we take each transition probability )(, zkij  as )(, zkN  when i > N – j: 
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They defined the integration of )(, zkij  by kijV ,  and kij   as 
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There is a relationship between the vector of pre-arrival probabilities π and the vector of 

arbitrary time probabilities P, related to the number of people that an outside observer 

finds in the system. Viajaya Laxmi & Gupta (2000) established a method that proved the 

relationship: 
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Performance measures (below) are used, including the average queue length Lq, blocking 

probability of an arbitrary customer PBL, and average waiting time in the queue Wq, to 

analyze the efficiency of queueing systems: 
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2.3  Kernel Estimators 

Suppose that we have a sample of the inter-arrival times, X1, ..., Xn, with an unknown 

density τ(t). The kernel estimator is an analytical tool that provides an effective way of 

revealing the structure behind such a sample. 

2.3.1 Gamma Kernel Estimator 

Recently, Chen (2000) suggested an asymmetric kernel with naturally varying shape, as a 

way to avoid allocating weight for negative values. The gamma kernel estimators are 

always non-negative, free of boundary bias, and achieve the optimal rate of convergence 

for the mean square error (MSE) in the non-negative kernel estimator class. Bouezmarni 

& Scaillet (2005) showed that this estimator is consistent and able to avoid boundary 

bias. Be KG(p, q) the gamma density function with shape p and rate q. The gamma kernel 

considered is 
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where b is a smoothing parameter that satisfies the condition 0b , nb as n . 

The gamma kernel estimator is 
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The smoothing parameter b is critical for the overall performance of the kernel estimator 

considered. A small b leads to a relatively bumpy density while a large one results in a 

smooth density. There are several methods to determine the best fit, from a minimization 
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of the mean integrated squared error (MISE) of );( bt


 to the asymptotic behavior of the 

MISE (AMISE). 

a. Least Squares Cross Validation (LSCV) Method 

The least squares cross validation (LSCV) method starts from the MISE expansion 

  .)()();(2);();(MISE 22

  dxxEdxxbxEdxbxEbx 


 

The minimization of the first term is equivalent to the minimization of 

  ].)();(2);([)();(MISE 22

  dxxhxdxhxEdxxEhx 


 

The right-hand side is unknown because it depends on τ. However, an unbiased estimator 

for this quantity is 

,);(2);()(LSCV
1
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where );( hX ii 


 is the density estimate based on the sample with Xi deleted; this is 

often called the ―leave-one-out‖ density estimator. A disadvantage of this method is that 

it suffers from high variation. 

b. Asymptotic Behavior of the MISE (AMISE) Method 

An alternative parameter selector is to consider the asymptotic behavior of the MISE of 

the gamma kernel estimator. Chen (2000) uses some aspects of the gamma distribution 

and a Taylor expansion to determine the MISE as follows: 
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The asymptotic MISE disregards the last term; therefore, the optimal b that minimizes 

the leading terms above is 
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where the functions τ, τ’ e τ’’ are unknown. These quantities are obtained from the fitted 

gamma density with parameters adjusted from the sample. This solution still requires 

further study, but our paper shows promising results.  

2.3.2. Zhang et al. (1999) Estimator 

Zhang et al. (1999) submitted a model that works particularly well when τ(0) > 0 and 

combines pseudodata creation, its transformation, and its reflection around the Y-axis in 

the following three steps: 

Step 1: Transform the original data X1 , ..., Xn to g(X1), ..., g(Xn), while keeping the 

original data, where g is a nonnegative, continuous, and monotonically 

increasing function from [0,∞) to [0,∞). 

Based on extensive simulations, the transformation that best suits a broad 

variety of densities is 

,
32

)( Adxdxxxg   

where A > 1/3 and d=f’(0)/f(0). 

Step 2: Reflect the pseudodata, g(X1), ..., g(Xn), around the origin. 

Step 3: Based on the enlarged data sample, -g(X1), ..., -g(Xn), X1, ..., Xn, define the 

new estimator as 
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where h is a smoothing parameter and K is a symmetric probability function 

with support [-1, 1] like the Epanechnikov kernel: 
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Notice that the transformation g defined above is not available in practice because d is 

unknown. A good estimator can be obtained when d is written as (d/dx)logf(x)|x=0, 

,
)0(log)(log
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and K0 is a so-called endpoint kernel, satisfying  
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Zhang et al. (1999) proved that for t ≥ h, the effect of reflected pseudodata is 

insignificant and the estimator can be reduced to the Parzen-Rosenblatt estimator: 
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They also stated that  
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Thus, )(tn


 only integrates to 1 when dn = 0, so gn(Xi) = Xi, or when Xi = 0 for all Xi‘s, 

because gn(0) = 0. However, when n , both limits of the second term will eventually 

converge to 0 and )(tn


 will integrate to 1 asymptotically. 
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Zhang & Karunamuni (1998) used the endpoint kernel 

 ,0,1
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)1(12)(0  








ItttK  

and showed that this kernel minimizes the MSE when estimating τ(0). Therefore, h0 = 2h 

is approximately the optimal smoothing parameter for estimating τ(0) except when τ(0) = 

0. 

Chiu (1991) described a parameter selecting method that considered the optimal h that 

minimizes the asymptotic MISE when K is a symmetric probability function with up to 

the fourth moment being finite 
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where the function  dxx 2)(''  is unknown.  

Chiu‘s (1991) ―plug in‖ method consists of estimating this quantity through the 

characteristic function of the sample 
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and calculating the optimal h with the previous formula. The characteristic function of τ 

is 

.)()(  dxxe xi    

By the inversion formula, we have 

,)()2()( 1


   dex xi  

thus, 

,)()2()('´' 21


   dex xi , 

and 



13 

 

.)]([])()2[(])()2[()('' 242142212

     dxxdxdedxdedxx xixi    

Using Parseval‘s identity, we can show that 
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Chiu (1991) introduced a cutoff value Λ for λ, such that nc /)(ˆ
2
 . Extensive 

computational experiments from Bessegato et al. (2002) show that c = 3 is the value that 

minimizes the estimator variance. The final ―plug in‖ estimator is then 

   
.

)(ˆ)(

)(
ˆ

5/1

0

1241
2

2

2

AMISE

























  dndxxKxn

dxxK
h  

3. Experimental Results 

This section presents some results of simulations for GI
X
/M/c/N systems with partial 

blocks, where the inter-arrival time is estimated through the following kernel methods: 

• Gamma kernel estimator with LSCV method; 

• Gamma kennel estimator with optimal bAMISE. 

• Zhang et al. (1999) estimator with Chiu‘s (1991) ―plug in‖ method. 

To evaluate the performance of the estimators above, we will compare the mean square 

error (MSE) of each estimated pre-arrival probability in the following way: 

Step 1: Generate a sample of size n of general inter-arrival distribution τ; 

Step 2: Calculate the mean service rate μ = g (ρcE(τ))
-1

; 

Step 3: Estimate the optimal smoothing parameter h or b; 

Step 4: Use the kernel density method to estimate the theoretical density function 

τ(x); 

Step 5: Find each estimated transition probability; 

Step 6: Solve the linear system: 
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The algorithm above was coded in R 2.8.0 (or earlier versions; see R Development Core 

Team, 2010). The code is available upon request from the authors or directly from the 

web
1
 for educational and research purposes. 

The experiments are based on random samples of inter-arrival times of size n = 100. 

Slightly larger and smaller samples were also tested, but the results (not shown) are 

similar. The theoretical inter-arrival distributions considered in this experiment were 

• Weibull distribution with shape = 2 and rate = 20, 

• Gamma distribution with shape = 10 and rate = 2, and 

• Gamma mixture distribution of 0.45gamma(5; 2) + 0.55gamma (30; 1). 

The Weibull density has τ´(0) ≠ 0, the pure gamma has τ´(0) = 0, and the gamma mixture 

is bimodal. We choose Weibull and gamma distributions because of their well-known 

flexibility for modeling real databases. For simplicity, the group size X is constant and 

equal to 1. Two different numbers of servers were considered, c = 5 and 10, with 

maximum capacities of N = 20 and 25, respectively (which result in buffers of fixed sizes 

equal to 10) (Figs. 1, 2). 

In general, the errors decreased as the number of servers c increased, and they were 

dependent on the theoretical distribution considered. We obtained the largest errors for 

the last distribution (gamma mixture). The LSCV method is better than bAMISE on the first 

and last distributions. Zhang et al.‘s (1999) estimator has the worst performance on the 

first and a competitive performance on the second distribution (gamma distribution). All 

the estimators performed well with the second distribution. The last distribution (gamma 

mixture) has a particular behavior. Although the errors are large for most of the 

                                                 

1
 URL: http://www.est.ufmg.br/ftp/fcruz/kernel/ 

http://www.est.ufmg.br/ftp/fcruz/kernel/
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estimates, the error is small for the blocking probability (i.e., 20


, for the system with c = 

5, Figure 1, and 25


, for c = 10, Figure 2). The blocking probability is an important 

performance measure because it indicates the fraction of costumers lost by the system. 

  
a) Weibull(2.0; 20) a) Weibull(2.0; 20) 

  
b) Gamma(10; 2.0) b) Gamma(10; 2.0) 

  
c) 0.45Gamma(5.0; 2.0) + 0.55Gamma(30; 1.0) c) 0.45Gamma(5.0; 2.0) + 0.55Gamma(30; 1.0) 

Figure 1: πn and EQM( n


) for c = 5 Figure 2: πn and EQM( n


) for c = 10 

4. Application to a Real Call Center Data Set 

We analyzed a real database of 7,761 phone calls made on April 7, 2006, from 8:00 am 

until 1:00 pm to a call center (data available from the authors upon request or directly 

from the web
1
). We worked on a set of inter-arrival and service times to find the required 

minimum size of the server facility taking into account that the arrival rates are not 

homogeneous. In fact, larger inter-arrival times were detected toward the beginning of 

the day rather than throughout the day. This will lead to the adjustment of a different 

system for each hour of service that had an approximately homogeneous arrival rate. 

Using this data, we will model a GI
X
/M/c/N system with a kernel inter-arrival density 

estimate for each hour of service. 
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The data set is presented in seconds, which is the precision given by the data acquisition 

system. This constraint will lead to ties in the arrival times (i.e., more than one call can 

arrive in the same second). Therefore, we treated same-time calls as part of a single 

arrival group and fit a discrete probability distribution. Table 1 shows the observed 

frequency of group sizes X and the fitted distribution D by hour. 

Table 1: Observed frequency of group sizes X and fitted distributions D 

 

Time: 8am – 9am 9am – 10am 10am – 11am 11am – 12am 12am – 1pm 

1 arrival 0,915 0,808 0,794 0,882 0,916 

2 arrivals 0,085 0,158 0,172 0,108 0,075 

3 arrivals 0,000 0,031 0,030 0,009 0,009 

4 arrivals 0,000 0,003 0,004 0,001 0,000 

D ~ Poisson(0.082) Geom.(0.813) Geom.(0.804) Geom.(0.885) Geom.(0.914) 

We used the gamma kennel-estimator with optimal bAMISE as the kernel density 

estimation method. This method gave estimated densities bounded at τ = 0 and illustrates 

the information we miss when data is rounded. We also considered the gamma kernel 

estimator with LSCV method, but it did not behave as well with discrete data. Table 2 

shows the smoothing parameter calculated, and Figure 3 shows the estimated densities. 

Table 2: AMISE smoothing parameter for gamma kernel 

 

Time: 8am – 9am 9am – 10am 10am – 11am 11am – 12am 12am – 1pm 

bAMISE 0,1509 0,0505 0,0476 0,0625 0,0932 

Service time distribution fits an exponential distribution with parameter λ = 0.003339 and 

standard error of 3.810
-5

. The behavior of the system then becomes restricted to the 

choice of the number of servers c and capacity of the system N. In Table 3, the minimum 

number of servers required is set to maintain the stability of the system at each hour 

considered. 
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Table 3: Minimum number of servers 

 
Time: 8am – 9am 9am – 10am 10am – 11am 11am – 12am 12am – 1pm 

min{c} 19 97 110 64 40 

 

  
a) 8:00am-9:00am b) 9:00am-10:00am 

  
c) 10:00am-11:00am d) 11:00am-12:00am 

 
e) 12:00am-1:00pm 

Figure 3: Estimated inter-arrival times by hour 

To optimize system performance, it is necessary to establish some criterion function for 

the adopted design. If we only consider the effective arrival rate (λEF = λ[1-PBL]), we can 

describe this performance measure according to the number of servers and the maximum 

queue size. Figure 4 shows this relationship for 8:00 to 9:00am. We saw similar results 

(not shown) for different periods. A good criterion would be the C = (C1/λEF + C2c + 

C3N), where C1, C2 , and C3 are costs related to each parameter and defined by the system 

environment. As an example, if we have C1 = 500, C2 = 1 and C3 = 1, the state with 
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minimal criterion would be c = 19 and N = 20. If cost C1 is raised to 600, the best 

configuration would be c = 21 and N = 21.  

 

Figure 4: Effective arrival rate as a function of N and c 

Figure 5 shows the invariant distributions estimated for other periods with different 

queue and server facility sizes. The method seems helpful for adjusting the maximum 

size N, and it is clear that the period plays a key role. 

5. Concluding Remarks 

We studied the adequacy of the kernel estimator methods for calculating the invariant 

probability distribution and performance measures of queueing systems that have general 

inter-arrival distribution times with bulk arrivals. Simulations showed that when τ´(0) ≠ 

0, the gamma kernel method had the best performance. This suggests the Zhang et al. 

(1999) method does not work well when τ(0) > 0. At the same time, its behavior with the 

bimodal density showed a very low EQM for probabilities near the maximum state. This 

implies a good estimation of the blocking probability and other performance measures. 

The method used to select the smoothing parameter for the gamma kernel estimator had 

no effect. A better selector would have the function of its AMISE optimal parameter 

estimated like the ―plug in‖ method for symmetric kernels. The combined use of 

smoothing parameter selection and Bayesian techniques is promising (see Lima & 

Atuncar, 2010). 
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a) 9:00am-10:00am b) 10:00am-11:00am 

  

  
c) 11:00am-12:00am d) 12:00am-1:00pm 

 

Figure 5: Estimated invariant distributions 

Future research may take other directions—for instance, determining how the estimate of 

the pre-arrival invariant distribution moves away from its real value. One approach is 

from the variance of the bias and variance of each probability estimated. For example, 

the variance of an estimate of transition probability pij could depend on the variance of 

term 0̂ , so we would need to find 

.)),(ˆvar()ˆvar(
0

0 


 dzhze zc  
 

This research can be applied to several areas of practical interest, including health and 

industry. For example, it could be critical in a medical emergency room that must 

optimize resource allocation. 
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