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Abstract

We consider a interacting particle system, the Glauber +Kawasaki model. This
model is the result of the combination of a fast stirring, the Kawasaki part, and a
spin flip process, the Glauber part. This process has a Reaction-Diffusion equation
as hydrodynamic limit, as is proven in [DFL]. The ergodicity of these dynamics in
the presence of a metastable state (double well potential) was proven in [BPSV2].
In this article we prove that, in the limit, the expected value of each spin converges
to the global minimizer of the potential. Also we prove decay of correlations of the
ergodic measure.

1 Introduction

The main goal of this work is the discussion of a problem involving the long time behaviour
for a class of interacting particle systems related to reaction diffusion equations.

The class of interacting particle systems which we study here has been proposed by De
Masi, Ferrari and Lebowitz in 1986, as alternative models for reaction-diffusion systems.

They are obtained as interacting particle systems on {−1, +1}Z
d

, from the superposition of
a Glauber type dynamics (spin flip, corresponding to reactive part) and a stirring one (also
called Kawasaki dynamics at infinite temperature), corresponding to the diffusive part,
and which is speeded by a factor, say ε−2. The kinetic limit which here corresponds to
the hydrodynamical one involves the simultaneous change of space scaling in the diffusive
limit for the stirring, to provide the macro scale (macro= ε micro). Under such limit,
the macroscopic description is verified, being given by a reaction diffusion equation of the
form

∂tm = ∆m + F (m) (1)

where m(r, t) ∈ R represents magnetization or density, the force term F (·) being de-
termined by the Glauber rates. For example, given any polynomial F (·) we may choose
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finite range spin flip rates which lead to the above equation (of course there are inumerous
choices, though the behaviour should be similar). That is, the empirical magnetization,
or the density of particles in small boxes, converges in probability to the solution of the
reaction diffusion equation. Indeed one knows more: strong forms of propagation of chaos
(i.e. asymptotic independence of different spins) have been proven, initially in De Masi et
al.(86), [DFL], and later in sharper forms by several authors, see A.De Masi, E.Presutti
(91) [DP]. At the level of propagation of chaos, more general systems, with m(r, t) taking
values in R

k are treated just in the same way, though we restrict to the case k = 1 and
so there is no loss in assuming F (m) = −V ′(m) in the above equation.

In spite of the validity of propagation of chaos, which corresponds to the infinite
temperature situation, for any fixed value of the scale parameter ε the product measures
are not (except for trivial cases) invariant for the system. This is clear due to the presence
of a spin flip dynamics which corresponds to a non-product Gibbs measure, at finite
temperature. Thus, the problem of looking at what happens at times which tend to infinity
as ε → 0, or even for fixed, but arbitrarily small positive values of ε is an important one.
These questions could be roughly stated as: what happens beyond the “hydrodynamical
scaling”? To these set belong problems of clear importance in the description of non-
equilibrium behaviour such as phase separations. The simpler way is to consider V (·) as
a double well and to ask about the escape from the unstable homogeneous fixed point of
the reaction-diffusion equation, i.e., the local maximun in V (·). Physically it corresponds
to the situation of a gas which from a high temperature is suddenly cooled below the
critical one, so that it becomes unstable, with the formation of liquid droplets having the
coexistence of regions of vapor and others of liquid, a state which does not correspond to a
pure phase, but is a mixture of such. There are several works in this direction, describing
to a certain extend the onset of phase separation in this class of models, i.e. when does it
escape from the homogeneous unstable point, how are the incipient clusters corresponding
to m+ and m− after the escape, and how do they evolve. (See e.g. Calderoni et al. (89)
[C], Schonmann (98) [Sch])

Going further, one is naturally lead to a full multi-scale behaviour, and the complete
description gets quite hard. But, going to the other extremal situation, when ε > 0
is fixed and time tends to infinity, one is lead to investigate the ergodic behaviour of
such systems. We refer to Liggett,(2000), [L2] for a discution of this. For a class of
rates leading to a single well potential, the ergodicity for any d ≥ 1, has been proven
by Brassesco et. al. (2000) [BPSV1]. The same authors also proved ergodicity in the
case of a double well potential provided V (·) which has a unique minimizer, cf. Brassesco
et. al. (2000) [BPSV2]. We also refer to the article of Durrett and Newhauser (94)
[DN], where a large classes of spin flip rates were considered, with the characteristic of
having a trapping configuration (e.g. the contact process). In such case phase transition
might occur, for the same reason which leads to the existence of an invariant measure with
magnetization different from the trapping configuration, i.e. is related to the minimizer of
the potential. Also for a finite configurations space the system has a metastable behavior
and the asymptotic of the exit time from a neighborhood of the metastable state is
analyzed in [H].

In this work, we complete the features related to the unique invariant measure of the
process, in the double well potential case. First, we prove that in the limit as ε goes to zero
the espected value of a coordinate is m+, the global minima of the potential. For this we
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complete the percolation argument in the proof of ergodicity in Brassesco et. al. [BPSV2],
from which follows easely the result. As a consequence of the exponential convergence
to the invariant measure as proven in Brassesco et. al. [BPSV2], and a clasical result of
Liggett, we get the exponential decay of correlations of two spins. The obtained lower
bound for the decay depends only on the distance between the coordinates times a factor
ε2.

2 Definitions and results

We consider, for each ε > 0, a Markov process {σ
(ε)
t }t≥0, σ

(ε)
t ∈ Ω = {−1, 1}Z, where we

let Z be the set of integers. The generator of the process (Glauber+Kawasaki process) is:

L(ε)
µ = ε−2L0 + Lµ, (2)

where ε−2L0 is the accelerated stirring process defined by:

L0f(σ) =
∑

|x − y| = 1,
x, y ∈ Z

d

[f(σx,y) − f(σ)], (3)

where f is a cilindric function and σ ∈ Ω. Now, we take µ > 0, and γ ∈ ( 1

2 , 1). For the
Glauber part

Lµf(σ) =
∑

x∈Zε

cµ(x, σ)[f(σx) − f(σ)], (4)

The rates, cµ(x, σ), has to be modified for dimension d as :

cµ(x, σ) = c0(x, σ) −
µ

2
σ(x), (5)

and c0(x, σ), the intensity when µ = 0 is:

c0(x, σ) =
1

d

d
∑

i=1

{1− γσ(x)[σ(x − ei) + σ(x + ei)] + γ2σ(x − ei)σ(x + ei)}, (6)

where ei is the i-th coordinate unit vector. We restrict µ to 0 < µ < 2(1−γ)2 for cµ(x, σ)
be positive.

For each ε > 0, {σ
(ε)
t }t≥0 is a Markov process. We abreviate σt = σ

(ε)
t ∈ Ω. If ν is a

probability on Ω (resp. a single configuration σ), we will denote by E
(ε)
ν , (resp. by E

(ε)
σ )

the expectation of the above process starting with law ν (resp. from the configuration
σ). Also from [DFL] we have that, as ε → 0 the process converges to the solution of the
reaction-diffusion equation:

∂m

∂t
= ∆m − V ′

µ (m) . (7)

where :
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−V ′
µ = Eνm(−2σ (0) cµ (0, σ)) = −αm − βm3 + µ, (8)

νm denoting the Bernoulli measure on Ω, with average m and

α = 2(1− 2γ), β = 2γ2. (9)

The polynomial V ′
µ is the derivative of the double well potential Vµ. In [BPSV2], it

was proved that for ε small enough the process is ergodic:

Theorem 2.1 For any d ≥ 1, γ < 1 and µ > 0, there is a εγ,µ > 0 so that for any

ε < εγ,µ, the generator L
(ε)
µ has a unique invariant measure µε.

Observe that (8) is not ergodic (in the sense that it has two invariant solutions),
indeed, if we call m± the two points of local minimum of Vµ, the states m±(r) = m± are
stationary solutions of (8), locally stable. Also we have Vµ(m+) < Vµ(m−).

The main part in the proof of the last theorem is to study the discrepancies σ+
t − σ−

t

between the configurations starting from 1 (ie. with all the spins equal to 1) and −1 (resp.
equal to -1). Using the graphical construction (see Appendix), we have that σ+

t ≥ σ−
t ,

since the process is attractive. The authors prove that for ε small enough there exists c(ε)
and λ > 0 such that:

E
(ε)
1,−1

(

σ+(0, t) − σ−(0, t)
)

≤ c(ε)e−λt. (10)

Recall that the process σ
(ε)
t converges, as ε goes to zero, to the reaction-diffusion equa-

tion (8), and that this equation has two invariant solutions,m−, m+. The last constant,
c(ε), is not optimal, it depends on ε, and is related to the tunneling event to pass from
configurations with magnetization in the basin of m− to the configurations in the other
one, m+.

Regarding this, we can ask about the behavior of µε as ε goes to zero. We prove that:

Theorem 2.2 For µε the invariant measure for the process σ
(ε)
t we have that:

lim
ε→0

µε(σ(0)) = m+. (11)

We are also interested in studying the decay of correlations of the invariant measure
µε. Concernig this we prove that:

Theorem 2.3 For ε small enough, and for all x ∈ Z
d it holds:

|µε(σ(0)σ(x)) − µε(σ(0))µε(σ(x))| ≤ c(ε)e−cε2|x|. (12)

2.1 Proof of Theorem 2.2

We need to prove that:

Lemma 2.1 lim supε→0 µε(σ(0)) ≤ m+;
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and

Lemma 2.2 lim infε→0 µε(σ(0)) ≥ m+.

The first Lemma is easy to prove. Fix ε > 0 small enough. Since µε is ergodic:

E
(ε)
1

(σt(0)) → µε(σ(0)) (resp. E
(ε)
−1

(σt(0)) → µε(σ(0))), as t → ∞.
So that, using the atractiveness and the time invariance of µε we have that, for all

t > 0:
E

(ε)
−1

(σt(0)) ≤ µε(σ(0)) ≤ E
(ε)
1

(σt(0)).

Let δ > 0, using the proximity of the process to the solution of the reaction -difussion
equation, for each t; and also the proximity of the solution which starts on 1, to m+ for
t large enough, then there exists t0(ε, δ), such that for all t ≥ t0:

|E
(ε)
1

(σt(0)) − m+| ≤ δ,

then:

µε(σ(0)) ≤ E
(ε)
1

(σt(0))

≤ δ + m+.

Since δ is arbitrary the Lemma 2.1 is proven.

Proof (Lemma 2.2)
Let ∆(n) the cube centered at zero in Z

d with side n , let |∆(n)| be the number of
sites x ∈ Z

d which are contained in ∆(n). Define the magnetization:

Mn(σ, t) :=
1

|∆(n)|

∑

x∈∆(n)

σt(x).

If this average is over a cube centered at x, then we write Mx
n(σ, t), (when is clear

from the context we omit the superscript x).
As before, fix ε > 0 small enough. Since the process is translation invariant and

E
(ε)
−1

(σt(0)) ≤ µε(σ(0)) we have that:

E
(ε)
−1

(Mn(σ, t) − m+) + m+ ≤ µε(σ(0)). (13)

For ξ > 0 observe that:

E
(ε)
−1

(Mn(σ, t) − m+) ≥ E
(ε)
−1

[(Mn(σ, t) − m+)1{(Mn(σ,t)−m+)<−ξ}]

− ξP
(ε)
−1

[(Mn(σ, t) − m+) > −ξ]

≥ (−1 − m+)P
(ε)
−1

[(Mn(σ, t) − m+) < −ξ] − ξ

≥ (−1 − m+)P
(ε)
−1

[|Mn(σ, t) − m+| > ξ] − ξ. (14)

So it suffices to obtain an upper bound for the probability in the last inequality, which
goes to zero as ε tends to zero. This is the content of the next proposition.
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We modify the oriented percolation argument in the proof of Proposition 5.1 of
[BPSV2], to get the upper bound that we mentioned before, and complete the proof
of the former proposition . First we present some definitions.

Let D(`i), i = 1, 2 denote two partitions of Z
d into cubes ∆(`i), where:

`1 ≈ ε−1/10, `2 ≈ ε−1| log ε|. (15)

We will suppose that each cube ∆(`2) is the union of cubes ∆(`1) so that D(`1) is finer
than D(`2). For each x ∈ Z

d we define:

ηξ(x, t) =

{

1 if |Mx
(`1)

(σ, t) − m+| < ξ;

0 otherwise.

The pair (i, k) of Z
d×N will represent the cube ∆i(`2), element of the partition D(`2),

which contains i`2 and the time kT | log ε|, where T will be apropiately chosen. Finally
define the variable χ(i, k) with values G (G for good) and B (B for bad) as:

χ(i, k) =

{

G if η±
ξ (x, kT | log ε|) = 1, ∀x ∈ ∆i(`2);

B otherwise.

Where the ± in η±
ξ (x, t) means that we begin, in the graphical construction, with the

initial configurations 1 and −1. Then calling:

pε(k) = P
(ε)
1,−1

(χ(i, k) = B). (16)

We have that:

Proposition 2.1 For ε small enough there exists c(ε) > 0 and a > 0 such that, for all

k ≥ 1:
pε(k) ≤ c(ε)εak. (17)

In Proposition 5.1 of [BPSV2], the authors prove that P
(ε)
1,−1

(χ(i, k) = D) ≤ c(ε)εak,
where χ(i, k) = D means that there is a discrepancie at the i-cube at time kT | log ε|, we
follow the proof and make the apropiate changes to our case. Using this proposition we
can conclude Lemma 2.2. By (14):

µε(σ(0)) ≥ −2P
(ε)
−1

[|Mn(σ, t) − m+| > ξ] − ξ + m+

≥ −2pε(k) − ξ + m+

≥ −2(c(ε)εak) − ξ + m+. (18)

As k goes to infinity we get:

µε(σ(0)) ≥ m+ − ξ, (19)

so the Lemma 2.2 is proved.

Proof (Proposition 2.1)
First we quote the Proposition 2.1 from [BPSV2]:
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Proposition 2.2 For any ξ > 0 small enough there exists T0 > 0 such that given T ≥ T0,

n ≥ 1 we can find constants cn > 0 such that the following holds. Let ξ > 0, σ such that

ηξ(x, 0) = 1 for all x ∈ ∆(`2). Then:

P (ε)
σ (ηξ(x, t) = 1, for all x ∈ ∆(3`2)) ≥ 1− cnεn. (20)

Next we fix n ≥ d + 2, ξ small enough and T as in the last proposition. We say that
(i, k) is connected with (j, k + 1), in sinmbols (i, k) → (j, k + 1), if either i = j or ∆i(`2)
and ∆j(`2) are contiguous. This are the only (oriented) conections in Z

d × N. We say
that the site (i, k) is bad if χ(i, k) = B.

Given (i, k), k ≥ 2, we call C(i,k) the bad cluster connected (from below) to (i, k) as
the set:

{(j, h) : 1 ≤ h ≤ k, j ∈ Z
d there exists a path from (i, k) to (j, h) made of bad sites}.

(21)
Note that for all (i, k) ∈ C(i,k) we have χ(i, k) = B. Also if C(i,k) = ∅ for k ≥ 2 then

χ(j, k − 1) = G for j = i and for all j such that ∆i(`2) and ∆j(`2) are contiguous.
If C(i,k) ∩ (Zd × {1}) = ∅, we set τ(i, k) the largest time 1 ≤ h ≤ k such that for all j,

(j, h) /∈ C(i,k). In particular χ(j, h) = G for all (j, h) connected to C(i,k). If C(i,k)∩(Zd×1) 6=
∅, set τ(i, k) = 0.

We can decompose {χ(i, k) = B}, for k ≥ 2 as:
⋃

1≤h≤k

⋃

C(i,k)

{χ(i, k) = B, τ(i, k) = h, C(i,k) = C(i,k)}
⋃

{χ(i, k) = B, τ(i, k) = 0}. (22)

Let us condition the process from 0 up to time hT | log ε|, and call P
(ε)
h this conditional

law. Then:

pε(k) ≤
∑

1≤h≤k

∑

C(i,k)

P (ε)P
(ε)
h ({χ(i, k) = B, τ(i, k) = h, C(i,k) = C(i,k)}) + P (ε)(τ(i, k) = 0).

(23)
If C(i,k) = ∅ then τ(i, k) = k − 1 so that:

{χ(i, k) = B, C(i,k) = ∅} ⊆ {χ(i, k − 1) = G, χ(i, k) = B}. (24)

We estimate the probability of the right hand side, by Proposition 2.2: for all n there
exists cn such that for all ε > 0 small enough it holds:

P
(ε)
k−1(χ(i, k) = B, C(i,k) = ∅) ≤ cεn. (25)

If C(i,k) = C(i,k) 6= ∅, let us fix τ(i, k) = h, 1 ≤ h ≤ k − 2 and define the set:

A = {(j, k̃) : h ≤ k̃ ≤ k − 2, χ(j, k̃) = G, ∃j̃ : (j, k̃) −→ (j̃ , k̃ + 1) ∈ C(i,k)}. (26)

Since τ(i, k) = h the cardinality of A is at least q = 2d(k − h).
To control the influence of the process outside of a ball we only need to control the “dual

branching process”: (Y x
t,s)s≤t associated with the process in the graphical construction

(see Appendix), this is the content of the next Proposition, proved in [BPSV2]. For r > 0
call Br the closed ball centered at 0 with radius r with the sup norm in R

d, then:
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Proposition 2.3 There exists positive constants c0 and c∗ such that for all ε ≤ 1 and all

t ≥ | log ε| it holds:

P (ε)({∃ 0 ≤ s′ < s′′ ≤ t : Y 0
s′′,s′ 6⊆ Bc0ε−1t}) ≤ c∗e−t. (27)

Now define:

Si
k,h,r ≡ {Y

∆i(`2)
kT | log ε|,hT | log ε| 6⊆

⋃

|j′−i|<r

∆j′(`2)}. (28)

and observe that this event belongs to the σ−field generated by the marks in the time
interval [hT | log ε|, kT | log ε|], which is conditionally independient of what happens before
hT | log ε|. So that for r0 = c0(T ∧ (d + 2)), and c0 as in proposition 2.3, we get

P
(ε)
h (Si

k,h,r) ≤ {|∆i(`2)|c
∗e−(r−1)| log ε|/c01(r−1)≥(k−h)r0

} + 1(r−1)<(k−h)r0
. (29)

We may take a subset A′ of A whose cardinality is not smaller than q/(4r0)
d

and
such that any two elements (j, k′) and (j′, k′) in A′ have |j − j′| > 2r0. We condition
the process until time k′T | log ε|, where k′ is the largest time for which (j, k′) is in A′

(for some j). Let us denote by (j ′1, k
′) . . . (j′p, k

′) the points in A′ with the given k′ and
by (j1, k

′ + 1) . . . (jp, k
′ + 1) the points in C(i,k) connected to the above ones in A′. Let

` = 1 . . . p and

V `,k′,u =

{

Sj`

k′+1,k′,r0+1, if u = 1;

{χ(j′`, k
′) = G, χ(j`, k

′ + 1) = B} ∩ [Sj`

k′+1,k′,r0+1]
c, if u = −1.

We then have

P
(ε)
k′ (

p
⋂

`=1

{χ(j′`, k
′) = G, χ(j`, k

′ + 1) = B}) ≤
∑

u1,...,up

p
∏

`=1

P
(ε)
k′ (V `,k′,u`). (30)

By Propositions 2.3 and 2.2 there is c > 0 such that

P
(ε)
k′ (V `,k′,u`) ≤ cε(T∨(d+2))−d−1 ≤ cεp, (31)

and

P
(ε)
k′ (

p
⋂

`=1

{χ(j′`, k
′) = G, χ(j`, k

′ + 1) = B}) ≤ [cε]p
∑

u1,...,up

1 ≤ [2cε]p. (32)

Iterating, we get

P
(ε)
h ({χ(i, k) = B, τ(i, k) = h, C(i,k) = C(i,k)}) ≤ [2cε]q/(4r0)

d

. (33)

So that in (23) we get:

pε(k) ≤
k
∑

h=1

cεã(k−h) + P (ε)(τ(i, k) = 0). (34)
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The proof is then reduced to show that there exists an c > 0 and gε > 0 such that for
all k ≥ 2 it holds

P (ε)(τ(i, k) = 0) ≤ e−gεkd+1

+ cεãk, (35)

and
pε(1) ≤ e−gε . (36)

Let k ≥ 2 and A as before. We distinguish two cases |A| ≤ N0 and |A| > N0, with
N0 = 2d(k/2).

By (33):

P (ε)({τ(i, k) = 0, |A| > N0}) ≤ [2cε]N0/(4r0)
d

, (37)

which is bounded as the second term of r.h.s. of (35).
By simple geometric considerations, there is a > 0 such that

inf
τ(i,k)=0,|A|≤N0

|C(i,k)| ≥ akd+1. (38)

So we the proof of (35) is reduced to prove that:

P (ε)({|A| ≤ N0, |C(i,k)| ≥ akd+1}) ≤ e−gεkd+1

. (39)

If |A| ≤ N0 and |C(i,k)| ≥ akd+1, then there is a′ > 0 so that there are at least a′kd

connections (j, k′) → (j, k′ + 1) in C(i,k). Let E be an element in the space of marks (see
section 5) with the following properties:

i) There are no marks N ε
x,ei

with either x or x+ ei in the cube ∆(`2) in the time interval
[0, T | log ε|].

ii) η±
ξ (x, T | log ε|) = 1 for all x in the cube ∆(`2).

To find P (ε)(E) note that:

P (ε)({∀x ∈ ∆(`2) ∀i = 1, . . . , d : N ε
x,ei

> T | log ε|})

= [P (ε)({N ε
0,ei

> T | log ε|})]2d|∆(`2)|

= [e−ε−2T | log ε|]2d(ε−1| log ε|)d

> e−2dTε−5d

. (40)

On the other hand, calling τx
n , , x ∈ Z

d, n ≥ 0, the times when the Poisson marks,
with rates cmax = (1 + γ)2 + µ/2, rings. Suppose that

τx
1 < T | log ε| < τx

2 , x ∈ ∆(`2). (41)

Observe that in order to show that

cµ(x, σ) > Ux,+
1 cmax. (42)

it suffices to show that
Ux,+

1 < {(1 − γ)2 + µ/2}/cmax. (43)
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since cµ(x, σ) ≥ (1 + γ2). Conditions (41), (42) in turn implies (ii).
But

P (ε)({∀x ∈ ∆(`2) : τx
1 < T | log ε| < τx

2 , Ux,+
1 < {(1 − γ)2 + µ/2}/cmax})

=
∏

x∈∆(`2)

P (ε)(τx
1 < T | log ε| < τx

2 )P (ε)(Ux,+
1 < {(1 − γ)2 + µ/2}/cmax)

=

[

cmaxT | log ε|e−cmaxT | log ε|

(

(1 − γ)2 + µ/2

cmax

)]|∆(`2)|

. (44)

By (40), (44) and the independence of the marks process:

P (ε)(E) > c̃e−cε−a

.

Now if we call gε = | log(1 − P (ε)(E))| then:

P (ε)({|A| ≤ N0, |C(i,k)| ≥ akd+1})

≤ P (ε)({There exists a′kd conections (j, k′) → (j, k′ + 1) in C(i,k)})

≤ [P (ε)(Ec)]a
′kd+1

= e−a′gεkd+1

. (45)

Iterating, and taking k ≥ k(ε) = ( ã| log ε|
gε

)1/d, so that gε(k/2) ≥ ã| log ε|, we get:

pε(k) ≤ c

(

k
∑

h=0

εã(k−h)ec(k−h)e−gεhd+1

)

≤ c
(

εãk/2 + e−gε(k/2)d+1
)

≤ cεãk/2(ε−ãk/2e−gε(k/2)d+1

). (46)

Finally if we set c(ε) = Cε−ãk/2e−gε(k/2)d+1

then

pε(k) ≤ c(ε)εãk/2.

So the proof is concluded.

Note that since gε > | log(1 − c̃e−cε−a

)| then:

c(ε) ≤ ε−
ã
2 ( ã| log ε|

gε
)1/d

e−gε(k/2)d+1

≤ (e−g1/d
ε )

1
2 (ã| log ε|)1+1/d

≤ exp

(

1

2
| log(1 − c̃e−cε−a

)|−1(ã| log ε|)1+1/d

)

≤ ceceε−a

. (47)

This is an estimate of what we must pay to perform the tunnelling, see (10).
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2.2 Proof of Theorem 2.3

We will use a result of Liggett (Theorem 4.20 in [L1]). Before stating this result we shall
modify the expression of the generator:

L(ε)
µ = ε−2L0 + Lµ, (48)

in a way that highlights its local dynamics. Let us consider a finite subset T of Z
d, and

for each σ ∈ Ω, let us define the rate, cT (σ, dξ), ξ ∈ {−1, 1}T at which a transition occurs
involving only the coordinates on T .

We begin with the stirring process. Note that if T = {x, y}, |x − y| = 1 and if
ξ(x) = σ(y) and ξ(y) = σ(x) then cT (σ, ξ) = ε−2. So that σx,y ≡ σξ , where σξ is the
configuration that is equal to σ in the complement of T , and equal to ξ on T .

Next, in the Glauber case, if T = {x} then cT (σ, ξ) = cµ(x, σ), when ξ ∈ {−1, 1}{x} is
such that ξ(x) = −σ(x). And let cT (σ, dξ) = 0 in the other cases.

In this way, we can rewrite the generator as:

Lµf(σ) =
∑

T

∫

{−1,1}T

cT (σ, dξ)[f(σξ) − f(σ)]. (49)

Now call CT the maximun transition rate inolving the coordinates in T :

CT ≡ sup{cT (σ, {−1, 1}T ) : σ ∈ Ω},

and note that, if |T | ≥ 2 or if T = {x, y} with |x− y| > 1 then CT = 0. Also if we denote
cmax ≡ (1 + γ)2 + µ/2, then

CT ≤ ε−2 ∨ cmax ≤ 2ε−2

for ε > 0 small enough.
For u ∈ Z

d and T as before, define:

cT (u) = sup{‖cT (σ1, dξ) − cT (σ2, dξ)‖T : σ1(y) = σ2(y) for all y 6= u}, (50)

where ‖ ·‖T refers to the total variation norm in {−1, 1}T . This measures the dependence
of the rate cT (σ, dξ) in the coordinate u. If T = {u} and f is a function in {−1, 1}T ,
|f | ≤ 1 and σ1, σ2 ∈ Ω are such that σ1(u) 6= σ2(u) then:

|

∫

{−1,1}T

f(ξ)cT (σ1, dξ) −

∫

{−1,1}T

f(ξ)cT (σ2, dξ)|

≤ |
1

d

d
∑

i=1

[γ(σ1(u + ei) + σ1(u − ei)) + µ/2](f(1) + f(−1))|

≤ 4γ + µ,

so that cT (u) ≤ 4γ + µ.
Moreover, if T has two elements, then we have two cases. First, if T = {x, y} with

|x − y| = 1 , and x 6= u 6= y then cT (u) = 0; and second if T = {x, u}, |x − u| = 1, then
similary as before one gets that cT (u) ≤ ε−2.
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And for T in the other cases we have cT (u) = 0.
Now, for all x 6= u define:

γ(x, u) =
∑

T3x

cT (u). (51)

Then by translation invariance

γ(x, u) = γ(0, x − u) = c{x,u}(u) ≤ ε−2,

when |x − u| = 1, and γ(x, u) = 0 if |x − u| > 2.
We say that the process has finite range N if two conditions hold:
a) CT = 0 for |T | ≥ N , and b) γ(x, u) = 0 if |x − u| ≥ N .
In our process, |T | ≥ 2 or T = {x, y} with |x−y| > 1 implies CT = 0. Also γ(x, u) = 0

if |x − u| > 2. So that the range of our process is 2.
Finally let us define

M = sup
x∈Zd

∑

u

γ(x, u),

in particular M ≤ ε−2 in our process.
Now we apply Theorem 4.18 of Chapter I in [L1], that we state below. We denote

S(t) the semigroup of the process :

Theorem 2.4 If the process is of finite range then there exists δ > 0 and K > 0, such

that

‖S(t)(f(σ)g(σ)) − S(t)(f(σ))S(t)(g(σ))‖ ≤ K[|||f ||| |||g|||] exp(4Mt − δd(R1, R2)), (52)

where ‖h‖ = supσ∈Ω |h(σ)|, f and g are local functions; R1 = supp(f), R2 = supp(g), so
that d(R1, R2) is the distance between R1, R2; |||f ||| =

∑

x ∆f (x) and

∆f (x) = sup{|f(η) − f(ξ)| : η, ξ ∈ Ω, η(y) = ξ(y) for all y 6= x}.

We sketch briefly the proof.
Proof

We have that:

‖S(t)(f(σ)g(σ)) − S(t)(f(σ))S(t)(g(σ))‖

≤
∑

x,y

∆f (x)∆g(y)
∑

u,v

[
∑

T3u,v

CT ]

∫ t

0

γs(u − x)γs(v − y)ds, (53)

where γs(·) is the kernel of the semigoup generated by Γβ(u) =
∑

x β(x)γ(x − u) and
β ∈ `1(Z), that is esΓβ(u) =

∑

x β(x)γs(x − u). The main part proof is to bound :

sup
s

e−4Ms
∑

u,v,y

eδ|y|





∑

T3u,v

CT



 γs(u)γs(v − y). (54)

12



First take δ > 0 such that
∑

u

γ(0, u)eδ|u| ≤ 2M. (55)

Since M =
∑

u γ(0, u) is the norm of the operator Γ then

∑

u

γs(u)eδ|u| ≤ e2Ms,

so that:

sup
s

e−4Ms
∑

u,v,y

eδ|y|[
∑

T3u,v

CT ]γs(u)γs(v − y)

≤ sup
s

e−4Ms
∑

u,v,y

[
∑

T3u,v

CT ]γs(u)eδ|u|γs(v − y)eδ|v−y|eδ|v−u|

≤ (sup
u,v

[
∑

T3u,v

CT ])(eδN |{v : |u − v| = 1, |u| = 1; |v − y| = 1; u, v, y ∈ Zd}|)

= K, (56)

where N is the range of the process, and |A| is the cardinality of the set A.
Now, back to our process. If we denote fx(η) = η(x) then supp(fx) = {x}, and

|||fx||| = 2. In general, if fx1,...,xn(η) =
∏n

i=1 η(xi) then |||fx1,...,xn ||| = 2n. In (55), on the
last proof is enough to take δ = log 2. Our process has range two and M ≤ ε−2, so that
in (56) we have K ≤ Cε−2. Apliying this Theorem to the local functions f0 and fx, we
conclude that:

‖E
(ε)(σt(0)σt(x)) − E

(ε)(σt(0))E(ε)(σt(x))‖ ≤ Cε−2 exp(8ε−2t − (log 2)|x|). (57)

Now we use the exponential convergence to the ergodic measure to conclude the proof.

Recall that for ε small enough there are c(ε) = ceceε−a

, see (47), so that:

E
(ε)
1,−1

(

σ+(0, t) − σ−(0, t)
)

≤ c(ε)e−λt. (58)

Then we obtain

|E(ε)
σ (σ(0, t)) − E

(ε)
µε

(σ(0))| ≤ E
(ε)
1

(σ(0, t)) − E
(ε)
−1

(σ(0, t))

≤ E
(ε)
1,−1

(σ+(0, t) − σ−(0, t))

≤ c(ε)e−λt. (59)

Moreover

|E(ε)
σ (σ(x, t)σ(y, t)) − E

(ε)
µε

(σ(x)σ(y))| ≤ |E(ε)
σ,µε

(σ(x, t)σ(y, t)) − (σε(x, t)σε(y, t))|

≤ E
(ε)
1,µε

[(σ+(x, t) − σε(x, t)) + (σ+(y, t) − σε(y, t))]

≤ 2E
(ε)
1,−1

(σ+(0, t) − σ−(0, t))

≤ 2c(ε)e−λt. (60)
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Let 0 < s < t, then, after using the previous bounds:

‖E
(ε)(σt(0)σt(x)) − E

(ε)(σt(0))E(ε)(σt(x))‖

≤ ‖E
(ε)(σs(0)σs(x)) − E

(ε)(σs(0))E(ε)(σs(x))‖

+ ‖E
(ε)(σt(0)σt(x)) − E

(ε)(σs(0)σs(x))‖

+ ‖E
(ε)(σt(0))‖‖E

(ε)(σt(x)) − E
(ε)(σs(x))‖

+ ‖E
(ε)(σt(x))‖‖E

(ε)(σt(0)) − E
(ε)(σs(0))‖

≤ 4Cε−2 exp(8ε−2s − log 2|x|) + (2c(ε)e−λt + 2c(ε)e−λs) + 2(c(ε)e−λt + c(ε)e−λs)

≤ 4Cε−2 exp(8ε−2s − log 2|x|) + 8c(ε)e−λs. (61)

Now, if we take δ̃ = min{log 2, λ} and s = δ̃|x|

δ̃+8ε−2
, then we have 8ε−2s − log 2|x| ≤

− δ̃2|x|

δ̃+8ε−2
, so that

|E(ε)
σ (σ(0, t)σ(x, t)) − E

(ε)
σ (σ(0, t))E(ε)

σ (σ(x, t)) ≤ max{16ε−2, 8c(ε)}e
− δ̃2

δ̃+8ε−2 |x|

≤ ce−c′ε−ã

e−cε2|x|, (62)

for t > s.
To prove the theorem let t goes to infinity.

3 Appendix: Graphical Representation

For each x let N+
x , N−

x be a Poisson process of intensity cmax = (1 + γ)2 + µ/2, and for
each bond (x, x + ei) let N ε

x,x+ei
be a Poisson process of intensity ε−2. Let also Ux,+

n ,

Ux,−
n , n ≥ 1 be i.i.d. random variables uniformily distribuited in (0, 1), x ∈ Z

d, all this
variables are independient of each other. The graphical representation is a realization
of the process for any initial configuration. If N ε

x,x+ei
apears we exchange the spins at

x, x + ei, and at the time of the n-th mark of N−
x (resp.N+

x ) we flip the spin at x if and
only if σ(x) = 1 and cµ(x, σ) > Ux,+

n (resp. σ(x) = −1 and cµ(x, σ) > Ux,−
n ). This rule

defines a process equivalent to the Glauber+ Kawasaki, see [BPSV2].
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