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Abstract

This paper presents adjusted profile likelihoods for α, the roughness parameter of

G0
A(α, γ,L) distribution. This distribution has been widely used in the modelling, pro-

cessing and analysis of data corrupted by speckle noise, e.g., synthetic aperture radar

images. Specifically, we consider the following modified profile likelihoods: (i) the one

proposed by Cox and Reid [1987, 1989], and (ii) approximations to adjusted profile

likelihood proposed by Barndorff-Nielsen [1983], namely the approximations proposed

by Severini [1998, 1999] and one based on the results in Fraser and Reid [1995] and by

Fraser et al. [1999]. We focus on point estimation and on signalized likelihood ratio tests,

the parameter of interest being the roughness parameter that indexes the distribution.

As far as point estimation is concerned, the numerical evidence presented in the paper

favors the Cox and Reid [1987, 1989] adjustment, and in what concerns signalized likeli-

hood ratio tests, the results favor the approximation to Barndorff–Nielsen’s adjustment

based on the results in Fraser and Reid [1995] and Fraser et al. [1999]. An application

to real synthetic aperture radar imagery is presented and discussed.

Key Words: adjusted profile likelihood, image understanding, likelihood ratio test,

profile likelihood, speckle noise, synthetic aperture radar.
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1 Introduction

Imagery obtained with coherent illumination suffers from a noise known as speckle.

This is the case of laser, sonar, ultrasound-B and Synthetic Aperture Radar (SAR)

images. The noise does not follow the classical Gaussian additive structure, being

multiplicative in nature. Classical techniques for image analysis are thus inefficient

for extracting information from speckled data (see, for instance, Allende et al.

[2001], Delignon and Pieczynski [2002], Kuttikkad and Chellappa [2000], Medeiros

et al. [2003], Touzi [2002]).

In particular, synthetic aperture radar (SAR) sensors are becoming progres-

sively more used in all areas that employ remotely sensed data, since they are

active and therefore do not require external sources of illumination. They can im-

age the environment in a wavelength that is little or not at all affected by weather

conditions and provide complementary information to other sensors (optical, in-

frared etc.). The information obtained from SAR sensors is relevant for all remote

sensing applications, including environmental studies, anthropic activities, oil spill

monitoring, disaster assessment, reconnaissance, surveillance and targeting, among

others.

Since speckle noise hampers the ability to identify objects, many techniques

have been proposed to reduce such a noise. They can be applied either during

the generation phase of the images (multilook processing, see Lopes et al. [1990])

or after the data are available to users (processing with filters). An alternative

approach consists of devising techniques that can cope with the noise, such as the

use of statistical procedures [see, for instance, Gambini et al., in press].

Only univariate signals will be discussed here; the reader interested in multivari-

ate SAR statistical modelling is referred to Freitas et al. [2005]. Goodman [1985]

provided one of the first rigorous statistical frameworks, known as the ‘Multiplica-

tive Model’ for dealing with speckle noise in the context of laser imaging. The use

of such a framework has led to successful techniques for SAR data processing and

analysis.

This phenomenological model states that the observation in every pixel is the
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outcome of a random variable Z : Ω → R+ which is, in turn, the product of two

independent random variables: X : Ω → R+, the ground truth or backscatter,

related to the intrinsic dielectric properties of the target, and Y : Ω → R+, the

speckle noise, which follows a square root of gamma law. The distribution of the

return, Z = XY , is completely specified by the distributions of X and Y .

The univariate multiplicative model began as a single distribution, namely the

Rayleigh law, was extended by Yueh et al. [1989] to accomodate the K law and was

later further improved by Frery et al. [1997] to the G distribution, which generalizes

the previous probability distributions.

The GA0 law is an important particular case of the more general G distribution.

It can successfully model a wide range of targets through their roughness. If Z is

a G0
A(α, γ,L)-distributed random variable, then its probability density function is

p(z; α, γ,L) = p(z) =
2LLΓ(L − α)z2L−1

γαΓ(L)Γ(−α)(γ + Lz2)L−α
,

with −α, γ, z ≥ 0 and L ≥ 1. Its cummulative distribution function is given

by F (z) = Υ2L,−2α(−αz2/γ), where Υ2L,−2α(·) is the cummulative distribution

function of a F2L,−2α-distributed random variable.

The parameter α is directly related to the roughness of the target. For typical

sensors and scenes, if α ≤ −10 then the area is homogeneous (usually crops or

pastures), if −10 < α ≤ −5 then the region is heterogeneous (usually forests or

undulated relief), and −5 < α < 0 is associated with extremely heterogeneous

targets (usually urban areas).

γ is a scale parameter that can be viewed as a nuisance parameter, and L, the

number of looks, is directly related to the signal-to-noise ratio (the smaller L, the

noisier the image). The latter can be controlled to some extent either in the early

stages of the raw data processing or through filters, but at the expense of loosing

spatial resolution. Airborne SAR systems can achieve resolutions of the order of

centimeters, which partially explains their large impact in contemporary remote

sensing. Regarded as a parameter, L can be estimated using homogeneous targets,

the estimate being valid for the entire image. It will be assumed known in our

study.
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Relevant information can be extracted by estimating α and γ as, for instance,

thematic maps (see, for instance, Mejail et al. [2003]) and maximum a posteriori

filters [Moschetti et al., in press]. Recent research has focused on improved estima-

tion through data resampling [Cribari-Neto et al., 2002] and via second-order bias

correction [Vasconcellos et al., 2005]. Robust estimators have been also proposed

for parameter estimation of speckled data [Allende et al., in press, Bustos et al.,

2002].

The GA0 law does not belong to the exponential family, and maximum like-

lihood estimators are not minimal sufficient statistics for (α, γ). The r-th order

moment of a random variable obeying the G0
A(α, γ,L) law is

E{zr} =
( γ

L
)r/2 Γ(−α− r/2)Γ(L+ r/2)

Γ(−α)Γ(L)
,

if −r/2 > α, and ∞ otherwise.

Figure 1 shows three G0
A(α, γ,L) densities: (α, γ,L) = (−1, 0.405, 1), (−8, 7.882, 3)

and (−15, 14.704, 8). It illustrates, for different numbers of looks, extremely het-

erogeneous, heterogeneous and homogeneous targets, respectively. The parameters

were chosen so that the distribution means are equal to one.

A complete account of this distribution and its properties can be found in Frery

et al. [1997] and Mejail et al. [2003]. Mejail et al. [2001] provide details about its

relationship to other distributions.

This paper presents two new results regarding inference under the GA0 model,

namely: we obtain analytically improved parameter estimators and develop im-

proved one-sided likelihood ratio inference. Improved parameter estimation is

achieved by maximizing an adjusted profiled likelihood function [Cox and Reid,

1987, 1989, Fraser and Reid, 1995, Fraser et al., 1999]. We also develop one-sided

improved likelihood ratio inference for the GA0 roughness parameter. We follow

Sartori et al. [1999] and consider tests based on the Barndorff-Nielsen [1980, 1983]

adjusted profile likelihood function. The chief goal of such inference lies in iden-

tifying whether a given scanned region is extremely heterogeneous, heterogeneous

or homogeneous. This kind of analysis, that turns data into valuable information

for decision making, is one of the ultimate goals of environmental studies.
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Figure 1: Probability density functions of the G0
A(−1, 0.405, 1) (solid),

G0
A(−8, 7.882, 3) (dashed) and G0

A(−15, 14.704, 8) (dotted) distributions.

The remainder of the paper unfolds as follows. Section 2 presents the profile

likelihood function and its properties. Section 3 presents the Barndorff-Nielsen [1980,

1983] adjustment and some alternative adjusted profile likelihoods, such as the Cox

and Reid [1987] adjustment. In Section 4 we derive such adjustments for inference

on the roughness parameter α. Monte Carlo results are presented in Section 5,

and numerical examples with real data sets are presented in Section 6. Finally,

Section 7 concludes the paper.

2 Profile Likelihood

Let Y = (y1, . . . , yn)T be an n-vector of independent random variables, each fol-

lowing a distribution that is indexed by two (possibly vector-valued) parameters:

ν and µ. Suppose that the interest lies in performing inference on µ in the pres-

ence of the nuisance parameter ν. It is sometimes possible to perform inference on
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µ using a marginal or a conditional likelihood function. Nevertheless, oftentimes

such functions cannot be obtained. The standard approach is to use the profile

likelihood function, which is defined as Lp(µ) = L(ν̂µ, µ), where L(·) is the usual

likelihood function and ν̂µ is the maximum likelihood estimate of ν for a given,

fixed µ. The usual likelihood ratio statistic,

LR(µ) = 2
[
`(ν̂, µ̂)− `(ν̂µ, µ)

]
= 2

[
`p(µ̂)− `p(µ)

]
,

is based on the profile likelihood function. Here, µ̂ and ν̂ are the maximum likeli-

hood estimates of µ and ν, respectively, `(·) is the log-likelihood function and `p(·)
is the profile log-likelihood function.

It is important to note, however, that Lp(·) is not a genuine likelihood. For

instance, for θ = (ν>, µ>)>, properties such as

E(u(θ)) = 0 and E
{
u(θ)u(θ)>

}
+ E

{∂u(θ)

∂θ>

}
= 0

do not hold when up(µ) is used instead of u(θ). Here and in what follows, u(θ) =

∂`(θ)/∂θ is the score function and up(µ) = ∂`p(µ)/∂µ is the profile score function.

It is noteworthy that the profile score and information biases are only guaranteed

to be O(1).

3 Modified Profile Likelihoods

3.1 Barndorff-Nielsen’s Modified Profile Likelihood

Several different adjustments to the profile likelihood function were proposed; see,

e.g., Severini [2000, Chapter 9]. Barndorff-Nielsen [1983] modified profile likelihood

is obtained as an approximation to a marginal or to a conditional likelihood for µ,

if either exists. In both cases, one uses the p∗ formula (Barndorff-Nielsen, 1980) to

approximate the probability density function of the maximum likelihood estimator

conditional on an ancillary statistic. The corresponding modified profile likelihood

is

LBN(µ) =

∣∣∣∣
∂ν̂µ

∂ν̂

∣∣∣∣
−1∣∣jνν(ν̂µ, µ)

∣∣−1/2
Lp(µ),
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where jνν(ν, µ) = −∂2`/∂ν∂ν> is the observed information for ν. The score and

information biases are of order O(n−1), and LBN(µ) is invariant under reparame-

terizations of the form (ν, µ) → (ν, ξ), where ν = ν(ν, µ) and ξ = ξ(µ).

The main difficulty in computing LBN(µ) lies in obtaining |∂ν̂µ/∂ν̂|. There is

an alternative expression for LBN(µ) that does not involve this term, but it involves

a sample space derivative of the log-likelihood function and the specification of an

ancillary a such that (ν̂, µ̂, a) is a minimal sufficient statistic. It can be shown that

∂ν̂µ

∂ν̂
= jνν(ν̂µ, µ; ν̂, µ̂, a)−1`ν;ν̂(ν̂µ, µ; ν̂, µ̂, a),

where

`ν;ν̂(ν̂µ, µ; ν̂, µ̂, a) =
∂

∂ν̂

(
∂`(ν̂µ, µ; ν̂, µ̂, a)

∂ν

)
.

Here, `(ν̂µ, µ; ν̂, µ̂, a) and jνν(ν̂µ, µ; ν̂, µ̂, a) are the log-likelihood function and the

observed information for ν, respectively; they depend on the data only through the

minimal sufficient statistic.

3.2 An Approximation Based on Population Covariances

An approximation to `ν;ν̂(ν̂µ, µ; ν̂, µ̂, a) can be obtained based on the population

covariance between `ν(ν, µ) and `ν(ν0, µ0). Severini [1998] proposed the following

approximation to the modified profile log-likelihood function:

`BN(µ) = `p(µ) +
1

2
log |jνν(ν̂µ, µ)| − log

∣∣Iν(ν̂µ, µ; ν̂, µ̂)
∣∣,

where

Iν(ν, µ; ν0, µ0) = E(ν0,µ0)

{
`ν(ν, µ)`ν(ν0, µ0)

>}
,

with `ν(ν, µ) = ∂`/∂ν. Note that Iν(ν̂µ, µ; ν̂, µ̂) does not depend on the ancillary

statistic a and that Iν(ν, µ; ν0, µ0) is the covariance between `ν(ν, µ) and `ν(ν0, µ0).

3.3 An Approximation Based on Empirical Covariances

An alternative approximation to Barndorff-Nielsen [1983] modified profile likeli-

hood function, say ˘̀
BN , was proposed by Severini [1999]; it was obtained replacing
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I(ν, µ; ν0, µ0) by

Ĭ(ν, µ; ν0, µ0) =
n∑

j=1

`(j)
ν (ν, µ)`(j)

ν (ν0, µ0)
>,

where `
(j)
θ (θ) = (`

(j)
ν (θ), `

(j)
µ (θ)) is the score function for the jth observation. This

approximation is particularly useful when the computation of expected values of

products of log-likelihood derivatives is cumbersome.

3.4 An Approximation Based on an Ancillary Statistic

A third approximation to `ν;ν̂(ν̂µ, µ; ν̂, µ̂, a) can be obtained through an approxi-

mately ancillary statistic [Fraser and Reid, 1995, Fraser et al., 1999, Severini, 2000].

The resulting log-likelihood function, ˜̀
BN , can be written as

˜̀
BN(µ) = `p(µ) +

1

2
log |jνν(ν̂µ, µ)| − log |`ν;Y(ν̂µ, µ)V̂ν |,

where `ν;Y(ν, µ) = ∂`ν(ν, µ)/∂Y> and

V̂ν =
(
−∂F1(y1;ν̂,µ̂)/∂ν̂

p1(y1;ν̂,µ̂)
· · · −∂Fn(yn;ν̂,µ̂)/∂ν̂

pn(yn;ν̂,µ̂)

)>
,

pj(y;ν, µ) being the probability density function of yj and Fj(y;ν, µ) being the cu-

mulative distribution function of yj. The corresponding estimator shall be denoted

as ̂̃µBN . The construction of the matrix V̂ν is based on an approximately ancillary

statistic [see Severini, 2000, p. 216].

3.5 An Approximation Based on Orthogonal Parameters

Suppose that the parameters are orthogonal, that is, that the elements of the score

vector, ∂`/∂µ and ∂`/∂λ, are uncorrelated, where λ = λ(µ, ν). Cox and Reid [1987]

proposed an adjustment that can be applied to the profile likelihood function in

this setting. It is an approximation to a conditional probability density function of

the observations given the maximum likelihood estimator of λ and can be written

as

LCR(µ) = |jλλ(λ̂µ, µ)|−1/2Lp(µ).
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The modified profile log-likelihood function is

`CR(µ) = `p(µ)− 1

2
log |jλλ(λ̂µ, µ)|;

the maximizer of `CR(µ) shall be denoted as µ̂CR. The score bias is O(n−1) but, in

general, the information bias remains O(1).

Cox and Reid [1987] assumed orthogonality between µ and λ. It is not always

possible, however, to find an orthogonal parameterization. Additionally, their ad-

justment is not invariant under reparameterizations of the form (λ, µ) → (η, ξ),

where η = η(λ, µ) and ξ = ξ(µ), unlike LBN(µ), for which the invariance property

is guaranteed by the term |∂ν̂µ/∂ν̂|. Note that if ν̂µ = ν̂ for all µ, then LBN(µ) =

LCR(µ). In this case, µ and ν are orthogonal parameters [Cox and Reid, 1987].

Also, it is possible to show that `BN(µ)− `BN(µ̂) = `CR(µ)− `CR(µ̂) + Op(n
−1). It

then follows that the likelihood ratio statistics obtained from `BN(µ) and `CR(µ)

differ by a term of order Op(n
−1).

Cox and Reid [1989] suggested that one should obtain an orthogonal parameter-

ization (µ, λ) under which the difference between λ̂µ and λ̂ (the restricted and un-

restricted maximum likelihood estimators of the nuisance parameter, respectively)

is Op(n
−3/2), instead of Op(n

−1). When that holds, the modified profile likelihood

function of Cox and Reid [1987] is equivalent to that of Barndorff-Nielsen [1983] to

order Op(n
−3/2) and, hence, the information bias of `CR is O(n−1) [DiCiccio et al.,

1996]. It is not always possible to find such an orthogonal parameterization, and

sometimes more than one parameterization is available. Cox and Reid [1989] have

proposed a criterion for choosing a parameterization amongst several alternative

orthogonal parameterizations. We have used it to obtain a version of `CR whose

maximum likelihood estimator of the roughness parameter proved to be more ac-

curate than the usual maximum likelihood estimator. The same criterion was used

by Yang and Xie [2003] and by Ferrari et al. [in press] in order to obtain more accu-

rate parameter estimators for the shape parameter of the Weibull distribution and

also likelihood ratio statistics whose null distributions are better approximated by

the χ2 asymptotic null distribution. The choice is made for each given µ0 requiring
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that

λ∗ = c

∫ λ i02(µ0, ζ)

i21(µ0, ζ)
dζ,

where c is a constant suitably chosen and irs(µ, λ) = E {n−1∂r+s`(µ, λ)/∂µr∂λs}.
We can also define λ∗ = h(λ) based on a non-orthogonal parameterization

(µ, ν). Here, it is necessary to solve two equations, namely:

i02
∂ν(µ, λ)

∂µ
= −i11,

i02
∂ν(µ, λ)

∂λ
= c

{
i21 + 2i12

∂ν(µ, λ)

∂µ
+ i03

(
∂ν(µ, λ)

∂µ

)2

− i02
∂2ν(µ, λ)

∂µ2

}
(1)

where, for simplicity, we have omitted the argument (µ, ν) from irs(µ, ν).

4 Likelihoods for the Roughness Parameter

The log-likelihood function based on a random sample of size n, (z1, . . . , zn), from

the G0
A(α, γ,L) distribution, apart from an unimportant constant, is

`(α, γ) = n log Γ(L − α)− nα log γ − n log Γ(−α)− (L − α)
n∑

i=1

log(γ + Lz2
i ).

The maximum likelihood estimators of α and γ, α̂ and γ̂, respectively, solve the

following system of non-linear symultaneous equations, where ψ(·) denotes the

digamma function:

n[ψ(−α̂)− ψ(L − α̂)] +
n∑

i=1

log

(
γ̂ + Lz2

i

γ̂

)
= 0,

−nα̂

γ̂
− (L − α̂)

n∑
i=1

1

γ̂ + Lz2
i

= 0.

The maximum likelihood estimators do not have closed form and need to be ob-

tained using a non-linear optimization method, such as Newton-Raphson Fisher’s

scoring, BHHH or BFGS, the latter being a quasi-Newton method. The profile

log-likelihood function is

`p(α) = n log Γ(L − α)− nα log γ̂α − n log Γ(−α)− (L − α)
n∑

i=1

log(γ̂α + Lz2
i ),
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where γ̂α is the root of the equation

∂`(α, γ̂α)

∂γ
= −nα

γ̂α

− (L − α)
n∑

i=1

1

γ̂α + Lz2
i

= 0.

Following the definitions and notation of Sections 3.2 through 3.4, we shall

now obtain, in closed-form, the three approximations to `BN(α) as function of the

pair (α, γ̂α). Such functions do not require the use of an ancilar statistic nor an

orthogonal parameterization. They are given by

`BN(α) = `p(α) +
1

2
log jγγ(α, γ̂α)

− log

{
α̂

γ̂

[
H

(
1,L; 1 + α̂;

γ̂

γ̂α

)
−H

(
1,L; α̂;

γ̂

γ̂α

)]

+

(
α̂

γ̂
− L− α̂

γ̂α − γ̂

)
Γ(L − α̂)

Γ(L)Γ(−α̂)

(
1− γ̂

γ̂α

)α̂−L(
γ̂α

γ̂

)α̂

π csc(α̂π)

}

− log

(
L − α

γ̂α

)
,

˘̀
BN(α) = `p(α) +

1

2
log jγγ(α, γ̂α)− log

{
−nαα̂

γ̂γ̂α

+
n∑

i=1

[
(L − α)(L − α̂)

(γ̂α + Lz2
i )(γ̂ + Lz2

i )

]}
,

and

˜̀
BN(α) = `p(α) +

1

2
log jγγ(α, γ̂α)− log(L − α)− log

[
n∑

i=1

(
zi

γ̂α + Lz2
i

)2
]

,

where

jγγ(α, γ̂α) = −nα

γ̂2
α

− (L − α)
n∑

i=1

1

(γ̂α + Lz2
i )

2
,

H(a, b; c; t) =
Γ(c)

Γ(a)Γ(b)

∞∑

k=0

Γ(a + k)Γ(b + k)tk

Γ(c + k)k!

is the hypergeometric function and γ̂α satisfies ∂`(α, γ̂α)/∂γ = 0. Due to numerical

problems, in what follows we shall only use one of these approximations, namely:

˜̀
BN(α).

We shall now consider the adjustment proposed by Cox and Reid [1987]. To that

end, an orthogonal parameterization was obtained following Cox and Reid [1989].
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The parameters α (interest) and γ (nuisance) that index the G0
A distribution are

not orthogonal. By solving equation (1), we obtain

γ = γ(α, λ) = −α

(
α

α− L
)1/L

exp

{
c

(L − α)2α2

[
2(α− 1)

L − α + 2
− (1 + 3L)

]
λ

}
.

As noted before, c is any constant conveniently chosen independently of λ.

Thus, a family of parameterizations can be obtained by taking

c = α2(L − α)K

[
2(α− 1)

L − α + 2
− (1 + 3L)

]−1

,

where K ≥ 2 is a constant that should be determined empirically. As a conse-

quence,

`(α, λ; K) = n log Γ(L − α)− nα log(−α)− n log Γ(−α)

−nα

L log

(
α

α− L
)
− nαλ(L − α)K−2

−(L − α)
n∑

i=1

log

{
−α

(
α

α− L
)1/L

exp
[
λ(L − α)K−2

]
+ Lz2

i

}
.

For a fixed value of the parameter of interest (α), the restricted maximum

likelihood estimator of the nuisance parameter (λ̂α) satisfies ∂`(α, λ̂α; K)/∂λ = 0.

It does not have closed-form.

The observed information relative to the parameter λ is

jλλ(α, λ; K) = −αL
(

α

α− L
)1/L

(L − α)2K−3 exp
[
λ(L − α)K−2

]

×
n∑

i=1

z2
i

{
−α

(
α

α− L
)1/L

exp
[
λ(L − α)K−2

]
+ Lz2

i

}−2

.

Therefore,

`CR(α; K) = `(α, λ̂α; K)− 1

2
log jλλ(α, λ̂α; K),

where λ̂α satisfies ∂`(α, λ̂α; K)/∂λ = 0.

5 Monte Carlo Results

Images are richly structured data consisting of several underlying classes, that

turn into more or less discernible groups of values; these values can be displayed

as shades of gray or as colors.
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A digital image can be described as a function f : S → Kp, where S ⊂ Z2 is

the (finite) support of the data, p ∈ N is the number of bands or dimensionality

of the data and K ⊂ R is the set of possible values. A pixel is the pair (s, f(s)),

s ∈ S.

An image can be processed in order to reduce the degradation that the sensor

imposes on the data. Blurring and noise are the two most frequent sources of data

degradation.

Typical image processing techniques employ local information, in the sense

that every quantity required to process each pixel is estimated from data in a

spatial neighborhood, i.e., the new image g : S → Kp is formed by the values

g(s) = Ψs(f(t), t ∈ v(s)), where v(s) are sites ‘close’ to s and s itself and Ψs are

conveniently chosen functions defined on (Kp)#v(s) that take values in Kp. For a

taxonomy of such functions, the reader is referred to the books by Barrett and

Myers [2004] and by Jain [1989], among other references.

Neighborhoods are usually squares of odd side, called ‘windows’, centered on

the pixel being processed. The size of the neighborhood plays an important role

in image processing; as a general rule, the bigger the window the more precise

the estimation but, at the same time, the more prone the technique will be to

undesirable effects caused by contamination. In this context, contamination is the

use of information from more than one class. Smaller windows are thus preferred

in order to reduce contamination.

The same rule of the thumb applies if, instead of processing, one is analyzing

image data: use the smallest possible window that provides meaningful and de-

pendable information. The smallest non-trivial odd window is of size 3 × 3, but

odd windows up to side 11 are frequently used. This defines the sample sizes that

will be used in the following Monte Carlo experiments, namely, 25, 49, 81 and 121.

The following values were used for (−α;L): (1; 1), (1; 3), (5; 3), (5; 8), (8; 3),

(8; 8), (10; 3), (10; 8), (15; 3), (15; 8). We have then considered different degrees of

target homogeneity (ranging from homogeneous to extremely heterogeneous tar-

gets), and also typical numbers of looks (1, 3 and 8).
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The value of the nuisance parameter was chosen as

γ = L
(

Γ(−α)Γ(L)

Γ(−α− 1/2) Γ(L+ 1/2)

)2

,

so that the resulting G0
A-distributed random variable has unit mean.

In what follows we shall present numerical results related to the point estima-

tion of the roughness parameter α. All Monte Calo results are based on 10,000

replications. Maximum likelihood estimators obtained from `, ˜̀
BN and `CR are

considered. The numerical maximizations of ` and ˜̀
BN were performed using the

alternated algorithm proposed by Frery et al. [2004]. The tables contain the fol-

lowing measures: true value; n; L; mean value; estimated bias; variance; mean

squared error (MSE); relative bias (r.b. = 100× (bias/parameter value)%); asym-

metry; kurtosis.

We have also performed one-sided signalized likelihood ratio tests on the rough-

ness parameter using the test statistics

signal(α̂− α)
√

LR, signal(̂̃αBN − α)

√
L̃RBN and signal(α̂CR − α)

√
LRCR,

where LR, L̃RBN e LRCR are the likelihood ratio test statistics based on the profile

likelihood and on the adjusted profile likelihoods ˜̀
BN and `CR, respectively. We

performed two tests, namely:

1. homogeneous and heterogeneous regions × extremely heterogeneous region:

H0 : α ≤ −5 versus H1 : −5 < α < 0;

2. homogeneous region × heterogeneous and extremely heterogeneous regions:

H0 : α ≤ −10 versus H1 : −10 < α < 0.

The main goal here is to compare the finite-sample behavior of the different tests.

The asymptotic null distribution of all test statistics is standard normal. The

numerical results regarding the tests comprise of: null rejection rates at the 10%

and 5% nominal levels, mean and variance of the test statistics (and their respective

asymptotic values), and nonnull rejection rates at the 5% nominal level.
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We also present quantile discrepancy plots where the differences between exact

and asymptotic quantiles of the test statistics are plotted against the asymptotic

quantiles, i.e., against standard normal quantiles. For instance, for the test based

on ` (profile likelihood), we denote the qth sample quantile of the corresponding test

statistics as ±√LR(q) and the respective standard normal quantile as N (0, 1)(q),

then the quantile discrepancy is computed as ±√LR(q)−N (0, 1)(q).

We note that the results relative to `CR(α; K) were obtained by setting K = 2.5

and K = 4. These values were selected empirically and proved to deliver the most

accurate inference.

At the outset, we consider the situation where α = −1, i.e., we simulate ob-

servations on the return signal amplitude of an extremely heterogeneous region,

e.g., an urban area. Table 1 presents descriptive statistics on different estimators

of α, the roughness parameter. It is noteworthy that α̂CR,K=4, obtained from the

maximization of `CR(α) with K = 4, displayed the best finite-sample behavior,

both in terms of bias and mean squared error.

For a window of size 7× 7 (n = 49) and number of looks (L) equal to one, the

least favorable situation, the relative bias of the estimator α̂CR,K=4 (0.973%) was

approximately twenty times smaller than that of the usual maximum likelihood

estimator α̂ (20.349%). The mean squared errors of these estimators were 0.097

and 1.421, respectively, that is, the mean squared error of α̂CR,K=4 was over 14

times smaller than that of α̂, the usual likelihood estimator of α. The skewness

and kurtosis of α̂CR,K=4 were −1.803 and 8.835, respectively, being closest to the

corresponding asymptotic values (0 and 3); the skewness and kurtosis of α̂ were,

respectively, −40.724 e 2467.124.

We shall now consider the case where α = −5, a value of the roughness pa-

rameter that is borderline between heterogeneous and extremely heterogeneous

regions. Table 2 presents descriptive statistics related to the different estimators of

α. Again, α̂CR,K=4 displayed the best finite-sample behavior, both in terms of bias

and mean squared error. For instance, when (n,L) = (81, 3), the mean squared

error of α̂CR,K=4 was 2.647, thus being 62 times smaller than that of the usual
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profile maximum likelihood estimator (165.970). Also, the absolute relative bias

of the former (α̂CR,K=4), 4.749%, is 8 times smaller than that of the latter (α̂).

Additionally, the skewness (−1.777) and kutosis (8.989) of α̂CR,K=4 are closest to

their asymptotic counterparts (0 and 3).

Values of the roughness parameter (α) between −5 and −10 are typical of

heterogeneous areas. Table 3 presents numerical results related to point estimation

of α when its true value is −8. Again, α̂CR,K=4 was the best perfoming estimator.

For example, when (n,L) = (49, 8), its mean squared error and relative bias were

equal to 7.997 e −2.148%, respectively; the next best performing estimator was

α̂CR,K=2.5 (64.838 and 15.687%). The skewness (−1.661) and kurtosis (7.812) of

α̂CR,K=4 were, again, closest to the respective asymptotic values (0 and 3).

We shall now move to the situation where α = −10, a value of the roughness

parameter on the borderline between heterogeneous and homogeneous areas. Ta-

ble 4 contains the numerical results relative to the point estimation of α. Once

again the best performing estimator was α̂CR,K=4. When (n,L) = (121, 3), the

variances of α̂, ̂̃αBN , α̂CR,K=2.5 were, respectively, 565.638, 566.338 and 229.064,

considerably larger than that of α̂CR,K=4, 8.398. The absolute biases of the α̂, ̂̃αBN ,

α̂CR,K=2.5 were equal to 6.601, 6.584 and 2.390, respectively, whereas the absolute

bias of α̂CR,K=4 was 1.578.

Table 5 presents simulation results corresponding to α = −15, which is a value

of the roughness parameter typical of homogeneous regions. When (n,L) = (81, 8),

the absolute relative biases of α̂, ̂̃αBN , α̂CR,K=4 and α̂CR,K=2.5 were equal to

41.515%, 40.759%, 8.907% and 17.413%, respectively. The corresponding mean

squared errors were 739.104, 739.982, 27.969 and 286.727. It is noteworthy that

the best performing estimator was again α̂CR,K=4, and that the second best per-

forming estimator displayed mean squared error over ten times larger than that of

α̂CR,K=4. When (n,L) = (121, 3), α̂CR,K=2.5 displayed the smallest absolute relative

bias (3.762%); however, α̂CR,K=4 had the smallest mean squared error (32.670).

Overall, the estimator with the best finite-sample performance was the mod-

ified profile maximum likelihood estimator of Cox and Reid [1987, 1989]. The
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usual maximum likelihood estimator and the modified profile likelihood estimator

obtained from ˜̀
BN displayed similar finite-sample behavior.

We shall next consider hypothesis testing. The interest lies in testing hypotheses

on the roughness parameter (α). The null rejection rates (expressed as percentages)

and the exact quantiles of the test statistics were obtained from 10,000 Monte Carlo

replications. The power of the tests (rejection rates, expressed as percentages, when

H0 is false) were estimated from 5,000 replications.

• heterogeneous and homogeneous regions × extremely heterogeneous region:

H0 : α ≤ −5 versus H1 : −5 < α < 0.

Table 6 presents the null rejection rates of the different signalized likelihood

ratio tests at the following significance levels: 5% and 10%. The value of α is −5

and we consider the following pairs (n,L): (25, 8) and (81, 3).

The figures in Table 6 show that the tests based on ˜̀
BN and on `CR,K=2.5

displayed the smallest size distortions; for instance, at the 10% nominal level and

for (n,L) = (81, 3), the null rejection rates of the tests based on `, ˜̀
BN , `CR,K=4

and `CR,K=2.5 were equal to 7.920%, 9.080%, 16.320% and 10.500%, respectively.

Note that the test based on `CR,K=4 was considerably liberal, i.e., it overrejects the

null hypothesis when such a hypothesis is true.

Table 7 contains the means and variances of the different test statistics and

also their asymptotic counterparts. Note that the test statistic based on `CR,K=4

displayed the poorest agreement between exact and asymptotic moments; for in-

stance, when (n,L) = (81, 3), its mean and variance were equal to 0.385 and 0.825,

respectively. The test statistics based on ˜̀
BN and `CR,K=2.5 had first two moments

closest to the corresponding asymptotic values; their means were equal to −0.069

e 0.052, and their variances were equal to 1.007 e 0.946, respectively.

Figures 2 and 3 show quantile discrepancies plots where the the differences

between exact and asymptotic quantiles of the test statistics are plotted against

the corresponding asymptotic quantiles, i.e., against standard normal quantiles.

The closer to zero the relative quantile discrepancy, the better the approximation
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of the exact null distribution of the test statistic by the limiting normal distribution.

When (n,L) = (25, 8), we note from Figure 2 that the null distribution function of

the test statistic based on `CR,K=2.5 is the one best approximated by the standard

normal distribution. When (n,L) = (81, 3) (Figure 3), the best agreement between

exact and asymptotic null distributions occurs for the test statistic obtained from

˜̀
BN (‘approx BN’ in the figure).

It is noteworthy the poor approximation of the exact null distribution of the test

statistic based on `CR,K=4 by the asymptotic null distribution (standard normal) in

Figures 2 and 3. Recall that it was by maximizing this modified profile likelihood

that we obtained the most accurate point estimate of the roughness parameter

(see Tables 1 through 5). Score function bias affects the bias of the corresponding

maximum likelihood estimator, which is defined as the zero of the score estimating

function. On the other hand, information matrix bias affects the distributional

properties of the corresponding maximum likelihood estimator, thus affecting the

finite-sample behavior of interval estimates and hypothesis tests based on such an

estimator. For details, see McCullagh and Tibshirani [1990]. This explains why

the best performing point estimator does not lead to the most accurate associated

test.

Table 8 contains the rejection rates of the null hypothesis of the tests based

on `, ˜̀
BN and `CR,K=2.5, at the 5% nominal level, when such a hypothesis is false.

The rejection rates (power) of the test based on `CR,K=2.5 were always greater than

those of the other tests; the next best performing test was the one based on ˜̀
BN .

Table 9 presents the null rejection rates of the different tests when α = −10,

a value of the roughness parameter on the borderline between heterogeneous and

homogeneous regions. We consider the pairs (n,L): (81, 8) and (121, 3). At

the 10% nominal level and for (n,L) = (81, 8), the null rejection rates of the

tests based on `, ˜̀
BN , `CR,K=4 and `CR,K=2.5 were 8.060%, 9.410%, 15.300% and

10.770%, whereas for (n,L) = (121, 3) the corresponding rejection rates were equal

to 8.660%, 9.640%, 23.400% and 12.050%, respectively. The best performing test

was that based on ˜̀
BN .
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Table 10 presents the means and variances of the different test statistics and

their asymptotic counterparts. The test statistic that displayed the best agreement

between exact and asymptotic first two moments was that based on ˜̀
BN . For

instance, when (n,L) = (121, 3), its mean and variance were −0.054 and 1.022,

respectively, the corresponding figures for the profile likelihood ratio statistic being

−0.118 and 1.026.
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Figure 2: Quantile discrepancy, α = −5, (n,L) = (25, 8).

Figures 4 and 5 present quantile discrepancy plots. When (n,L) = (81, 8),

Figure 4, the tests with best finite-sample behavior were those based on ˜̀
BN and

`CR,K=2.5. When (n,L) = (121, 3), Figure 5, the test statistic whose null finite-

sample distribution is best approximated by the limiting N (0, 1) was the statistic

based on ˜̀
BN , followed by the usual profile likelihood ratio test statistic.

Table 11 contains the rejection rates of the null hypothesis when such a hy-

pothesis is false, i.e., it contains the estimated powers of the tests. The nominal

level of all tests is 5%. The results indicate that the test based on `CR,K=2.5 is the
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Figure 3: Quantile discrepancy, α = −5, (n,L) = (81, 3).

most powerful, followed by the test based on ˜̀
BN .

6 Application to Real Data

Figure 6 shows a single look image obtained by the E-SAR airborne sensor over

surroundings of München, Germany, originally of 1024×600 pixels with a resolution

of the order of one meter. Several types of land use are visible in this image,

markedly crops (where little or no texture is visible), forest (where there is some

texture) and urban areas (where the texture is intense). Representative areas are

outlined and marked ‘C’, ‘F’ and ‘U’, respectively.

The NW-SE arrow shows the flight path during which the data were collected.

At each coordinate, a window of size 7 × 7 pixels was recorded, so we have over

a thousand samples of size 49 with overlapping data. The data in each sample

is assumed to be independent and identically distributed G0
A(αi, γi, 1) draws, i
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Figure 4: Quantile discrepancy, α = −10, (n,L) = (81, 8).

denoting the position.

Figure 7 shows the pairs of estimates as computed in every coordinate of the

image (the solid lines show the identity relationship). One can notice the differ-

ent relationships among them: α̂ and α̂BN behave similarly, as do α̂CR,K=4 and

α̂CR,K=2.5. The estimator α̂CR,K=2.5 assumes smaller values than α̂ in most situa-

tions, whereas α̂CR,K=4 usually exceeds α̂CR,K=2.5.

The quantitative analysis we present consists of estimating α at each coordinate

using profile and modified profile maximum likelihood methods. Four areas corre-

sponding to well-defined classes were identified, namely two from the urban spot,

one from forest and one from pasture; twenty-one samples were taken from each

area. Table 12 shows the mean, variance, skewness and kurtosis of the estimates

in each area.

The first and second urban areas can be qualified as “pure”, in the sense that

they mostly consist of buildings and houses; all estimators yield accurate point
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Figure 5: Quantile discrepancy, α = −10, (n,L) = (121, 3).

estimates, with a noticeable difference, however, in their variances (the observed

variance of α̂CR,K=2.5 is larger than that of α̂).

The main differences arise when estimation is performed using data from forest

and pasture areas. In both cases α̂ and α̂BN yield values that are larger than

expected; α̂CR,K=4 and α̂CR,K=2.5 yield better estimates, at the expense more vari-

ability.

Table 13 presents the results of applying the likelihood ratio test based on the

maximum likelihood and Cox-Reid (K = 2.5) estimators to these samples at the

10% and 5% significance levels; since the results at the two significance levels are

the same when α̂ is used, they are presented in the same columns. For each type of

target (First Urban, Second Urban, Forest and Pasture) twenty-one samples of size

49 were used and the results of the tests are presented as percentages of the fol-

lowing: Extremely Heterogeneous (+He), Heterogeneous (He), Homogeneous (Ho)

and Numerical Problems (N).

22



Figure 6: Single look E-SAR image

It is noticeable that the test based on α̂ consistently classifies the samples as

Extremely Heterogeneous, regardless of the ground truth; this decision is correct

for areas labeled as Urban, but incorrect in Forest and Pasture. On the other

hand, the test based on α̂CR,K=2.5 is able to detect the homogeneity of the Pasture

area and, to a lesser extent, the extreme heterogeneity of the two Urban spots.

Samples labeled as Forest were not identified as such by any test, a result which

is consistent with the values presented in Table 12: the mean of the maximum

likelihood estimates in these samples (−2.232) suggests that they were obtained

from an extremely heterogeneous area, which is wrong, whereas the mean of the

corrected estimates (−19.056) suggests homogeneity of the region. A few samples

labeled as Urban were classified as Heterogeneous by the tests based on the Cox-

Reid estimators; this is possibly due to the suburban nature of the area and the

presence of trees near the houses.
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7 Concluding Remarks

In this paper we obtained adjustments to the profile likelihood function for the

G0
A(α, γ,L) distribution in the context of modelling synthetic aperture radar im-

ages. The interest lies in performing inference on the roughness parameter of this

distribution, which is used to determine whether an imaged region is homogeneous,

heterogeneous or extremely heterogeneous.

The results are encouraging. Cribari-Neto et al. [2002, p. 816, Table 2] pro-

posed bootstrap-adjusted estimators that require resampling of the observations

and are, thus, computer-intensive. When (n,L) = (49, 1), their least biased esti-

mator displays absolute bias equal to 0.033, and the smallest mean squared error

of their bootstrap estimators was equal to 0.186. The estimators proposed in this

paper clearly outperform those proposed by Cribari-Neto et al. [2002]. Table 1

(Section 5) shows that the absolute bias of α̂CR,K=4 was equal to 0.010, the mean

squared error of this estimator being equal to 0.097.

We have also considered hypothesis tests. Overall, the test that displayed the

smallest size distortions was that based on ˜̀
BN ; the next best performing test was

the one based on `CR,K=2.5. The adjusted tests proved to be more powerful than

the usual profile likelihood ratio test.

Finally, we have analyzed real data obtained from a SAR image. We selected

samples from the three typical regions present in the image, namely: urban, forest

and pasture. The adjusted profile maximum likelihood estimators proved to be

more capable of providing useful information about the nature of the ground truth

than the usual maximum likelihood estimator. Profile and adjusted profile (Cox-

Reid, K = 2.5) likelihood ratio test statistics were computed using the same data.

Decisions based on the former always suggested that the imaged area was urban,

even when that was clearly not so, whereas the adjusted profile likelihood test

yielded much more sensible inference. Future work should focus on improving

the detection of forest, since this type of area was not correctly identified by any

procedure.

We strongly encourage practitioners to use the adjusted profile likelihood in-
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ference developed in this paper when analyzing speckled data.
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Table 6: Rejection rates under the null hypothesis, α = −5.
(n,L) Nominal level ` ˜̀

BN `CR,K=4 `CR,K=2.5

(25, 8)
10% 6.513 8.037 12.725 8.925
5% 3.150 3.925 6.400 4.375

(81, 3)
10% 7.920 9.080 16.320 10.500
5% 3.880 4.570 8.770 5.500

Table 7: Test statistics sample means and variances and their assymptotic values,
α = −5.

(n,L) Moment N(0, 1) ` ˜̀
BN `CR,K=4 `CR,K=2.5

(25, 8)
Mean 0 −0.245 −0.113 0.237 −0.019

Variance 1 1.035 1.014 0.829 0.953

(81, 3)
Mean 0 −0.143 −0.069 0.385 0.052

Variance 1 1.017 1.007 0.825 0.946

Table 8: Rejection rates at 5% significance level and at the null hypothesis, α = −5.
(n,L) α ` ˜̀

BN `CR,K=2.5

(25, 8)

−4.9 3.160 3.940 4.420
−4.5 5.540 6.680 7.580
−4.0 9.840 12.080 13.380
−3.5 19.300 22.060 23.740
−3.0 33.660 37.500 39.420
−2.5 53.620 57.740 59.520
−2.0 77.060 79.620 80.920
−1.0 99.660 99.680 99.680

(81, 3)

−4.9 4.540 5.280 6.160
−4.5 7.580 8.420 9.540
−4.0 14.560 15.980 17.700
−3.5 27.560 29.860 32.600
−3.0 48.980 51.340 54.400
−2.5 74.320 75.640 77.760
−2.0 93.780 94.580 95.200
−1.0 100.000 100.000 100.000

Table 9: Rejection rates at 5% significance level and at the null hypothesis, α =
−10.

(n,L) Nominal level ` ˜̀
BN `CR,K=4 `CR,K=2.5

(81, 8)
10% 8.060 9.410 15.300 10.770
5% 4.070 4.650 7.950 5.250

(121, 3)
10% 8.660 9.640 23.400 12.050
5% 4.350 4.960 12.770 6.450
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Table 10: Test statistics sample means and variances and their assymptotic values,
α = −10.

(n,L) Moment N(0, 1) ` ˜̀
BN `CR,K=4 `CR,K=2.5

(81, 8)
Mean 0 −0.125 −0.050 0.320 0.047

Variance 1 1.031 1.025 0.885 0.982

(121, 3)
Mean 0 −0.118 −0.054 0.647 0.147

Variance 1 1.026 1.022 0.742 0.905

Table 11: Rejection rates at 5% significance level and at the null hypothesis, α =
−10.

(n,L) α ` ˜̀
BN `CR,K=2.5

(81, 8)

−9.5 5.780 6.680 7.500
−9.0 8.260 9.300 10.460
−8.0 15.760 17.380 19.140
−7.0 31.440 33.920 36.000
−6.0 52.980 55.680 58.260
−5.0 77.940 80.160 81.700
−3.0 99.880 99.880 99.920

(121, 3)

−9.5 5.680 6.560 8.020
−9.0 7.240 7.820 9.380
−8.0 11.520 12.480 15.460
−7.0 20.720 22.240 26.100
−6.0 35.440 37.480 41.840
−5.0 57.760 59.660 63.900
−3.0 98.160 98.460 98.880
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Table 12: Descriptive analysis of estimates in four areas.
α̂ α̂CR,K=4 α̂CR,K=2.5 α̂BN

First Urban
Mean −1.363 −1.220 −1.590 −1.341

Variance 0.262 0.662 2.018 0.290
Skewness 1.202 −0.912 −1.298 0.880
Kurtosis 0.271 −0.316 0.298 −0.231

Second Urban
Mean −1.530 −1.222 −1.425 −1.500

Variance 0.066 0.142 0.309 0.086
Skewness 1.269 −0.596 −0.766 0.923
Kurtosis 0.396 −0.277 −0.128 −0.373

Forest
Mean −2.232 −5.724 −19.056 −2.457

Variance 0.092 1.217 29.109 0.115
Skewness −0.690 0.392 −0.187 −0.674
Kurtosis −0.273 −0.783 −0.918 −0.334

Pasture
Mean −2.556 −6.347 −21.947 −2.796

Variance 0.249 6.045 121.362 0.356
Skewness 0.326 0.790 0.703 0.444
Kurtosis −1.293 −0.613 −0.828 −1.119
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