HHAH A
CEO71: ANALISE DE REGRESSAO LINEAR PROFa: SUELY RUIZ GIOLO

CODIGOS R VERSAO 2.10
EXEMPLOS: REGRESSAO LINEAR SIMPLES
HHAH A

EXEMPLO 1 Fonte: Bussab (1988).
Y = tempo de reacdo a certo estimulo (em segundos)
X = idade (em anos)

exl<-read.table(http://www_ufpr.br/~giolo/CE071/Exemplos/Exemplols.txt" , h=T)
attach(exl)
ex1

tempo idade

1 96 20
2 92 20
3 106 20
4 100 20
5 98 25
6 104 25
7 110 25
8 101 25
9 116 30

10 106 30
11 109 30
12 100 30
13 112 35
14 105 35
15 118 35
16 108 35
17 113 40
18 112 40
19 127 40
20 117 40



x<-idade

y<-tempo

plot(x,y, pch=16, col=4)
points(c(20,25,30,35,40),c(98.5,103.25,107.75,110.75,117.25), pch=8, col=2)

L
L
e
L]
= |
* &
Ly L
T L
L L
L]
= = 7 L - *
* L
Ly - L
= — L
2
— L
= — . L
= 3 .
LD_.
Loy
L
| | | | |
20 25 a0 a5 40
)
cor(x,y)

[1] 0.7680814
cor.test(x,y)

Pearson"s product-moment correlation

data: x and y

t = 5.0889, df = 18, p-value = 7.662e-05

alternative hypothesis: true correlation is not equal to O
95 percent confidence interval:



0.4931929 0.9035073

sample estimates:
cor

0.7680814

modl<-Im(y~x)
anova(modl)

Analysis of Variance Table
Response: y
Df Sum Sq Mean Sq F value Pr(cF)
X 1 810.00 810.00 25.897 7.662e-05 ***
Residuals 18 563.00 31.28

Signif. codes: 0 “***” 0.001 “*** 0.01 “** 0.05 “.7 0.1 ©~ ~ 1

summary(modl)
Call:
Im(formula = y ~ X)
Residuals:

Min 1Q Median 3Q Max
-7.500 -4.125 -0.750 2.625 10.500
Coefficients:

Estimate Std. Error t value Pr(c|t])

(Intercept) 80.5000 5.4510 14.768 1.67e-11 ***
X 0.9000 0.1769 5.089 7.66e-05 ***

Signif. codes: 0 “***” 0.001 “*** 0.01 “** 0.05 .7 0.1 °~ ~ 1

Residual standard error: 5.593 on 18 degrees of freedom
Multiple R-squared: 0.5899, Adjusted R-squared: 0.5672
F-statistic: 25.9 on 1 and 18 DF, p-value: 7.662e-05

Xx1<-20:40
ye<-80.5+0.9*x1
lines(x1,ye)
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par(mfrow=c(2,2))
plot(modl, which=c(1:4), add.smooth=FALSE, pch=20)



Residuals vs Fitted

E _ 10
-3 " *a
o Lo — *
[1:]
=
= = - = .
[42) _ — *
o -
o - b .
oy . i 0
T T T T
100 105 110 115
Fitted values
Scale-Location
W - 19
ER N P o,
iy} -
i — * -
= @ _ . .
(1) (] o
M .
s _,. -
T 5
= _
[ -
_"TE —
L o
T o T T T T
100 105 110 115

Fitted values
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Shapiro-Wilk normality test
W = 0.9376, p-value = 0.2161

Obs: Como para cada valor de x nesse exemplo h& mais de um y observado (repeticdes),
é possivel utilizar o teste de Bartlett para testar a homogeneidade de variancias.

bartlett.test(y~x)
Bartlett test of homogeneity of variances

data: y by x
Bartlett"s K-squared = 0.2987, df = 4, p-value = 0.9899

predict(Im(y~x), interval="confidence”™, se.fit=T, level=0.95)

$fit
98.5
98.5
98.5
98.5
103.0
103.0
103.0
103.0
107.5
107.5
107.5
107.5
112.0
112.0
112.0
112.0
116.5
116.5
116.5
116.5

O©CoO~NOOTAWNPRE

$se.fit

lwr
93.94935
93.94935
93.94935
93.94935
99.78220
99.78220
99.78220
99.78220
104.87268
104.87268
104.87268
104.87268
108.78220
108.78220
108.78220
108.78220
111.94935
111.94935
111.94935
111.94935

upr
103.0507
103.0507
103.0507
103.0507
106.2178
106.2178
106.2178
106.2178
110.1273
110.1273
110.1273
110.1273
115.2178
115.2178
115.2178
115.2178
121.0507
121 .0507
121.0507
121.0507



[1] 2.166026 2.166026 2.166026 2.166026 1.531611 1.531611 1.531611 1.531611
[9] 1.250555 1.250555 1.250555 1.250555 1.531611 1.531611 1.531611 1.531611
[17] 2.166026 2.166026 2.166026 2.166026

$df
[1] 18

$residual .scale
[1] 5.592654

new <- data.frame(x = seq(24,28,1))
new

arwNPE
NNNNN
Oo~NOOh~ X

predict(Im(y~x),new, interval="prediction", se.fit=T, level=0.95)

$fit

fit lwr upr
1 102.1 89.85545 114.3445
2 103.0 90.81762 115.1824
3 103.9 91.76872 116.0313
4 104.8 92.70862 116.8914
5 105.7 93.63720 117.7628

$se.fit

1 2 3 4 5
1.640088 1.531611 1.436779 1.358451 1.299615
$df
[1] 18

$residual .scale
[1] 5.592654



pred<- predict(Im(y~x), interval="confidence", Ilevel=0.95)

predl<- predict(Im(y~x), interval="prediction', level=0.95)

matplot(x,cbind(pred, predi[,-1]), Ity=c(1,2,2,3,3), col=c(1,2,2,4,4),
type="1", ylab="valores preditos de y')
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EXEMPLO 2  Fonte: Montgomery e Peck (1992).
Y = tempo necessario para um entregador repor e executar pequenos servigos
em maquinas automaticas de vendas de refrigerantes (em minutos)



X = quantidade de volumes repostos nas maquinas (em unidades)

ex2<-read.table('http://www.ufpr._br/~giolo/CE071/Exemplos/Exemplo2s.txt", h=T)
attach(ex2)

ex2

Y X1

16.68
11.50
12.03
14.88
13.75
18.11
8.00
17.83
79.24
10 21.50
11 40.33
12 21.00
13 13.50
14 19.75
15 24.00
16 29.00
17 15.35
18 19.00
19 9.50
20 35.10 17
21 17.90 10
22 52.32 26
23 18.75 9
24 19.83 8
25 10.75 4
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plot(X1, Y, pch=16, col=4)
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cor(X1,Y)
[1] 0.9646146

cor.test(X1,Y)
Pearson®"s product-moment correlation

data: X1 and Y
t = 17.5455, df = 23, p-value = 8.216e-15
alternative hypothesis: true correlation is not equal to O
95 percent confidence interval:
0.9202275 0.9845031
sample estimates:
cor
0.9646146

modl<-Im(Y~X1)



anova(modl)

Analysis of Variance Table
Response: Y
Df Sum Sq Mean Sq F value Pr(>F)
X1 1 5382.4 5382.4 307.85 8.22e-15 ***
Residuals 23 402.1 17.5

Signif. codes: O “***” 0.001 “*** 0.01 “*” 0.05 “.” 0.1 = ~ 1

summary(modl)
Residuals:

Min 10 Median 30 Max
-7.5811 -1.8739 -0.3493 2.1807 10.6342
Coefficients:

Estimate Std. Error t value Pr(G|t])

(Intercept) 3.321 1.371 2.422 0.0237 *
X1 2.176 0.124 17.546 8.22e-15 ***

Signif. codes: O “***” (0.001 “**” 0.01 “*” 0.05 “.” 0.1 “ ~ 1
Residual standard error: 4.181 on 23 degrees of freedom
Multiple R-squared: 0.9305, Adjusted R-squared: 0.9275
F-statistic: 307.8 on 1 and 23 DF, p-value: 8.22e-15

par(mfrow=c(2,2))
plot(modl, which=c(1:4), add.smooth=FALSE, pch=20)
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shapiro.test(modl$resid)
Shapiro-Wilk normality test

data: modl$resid
W = 0.9671, p-value = 0.5718

x1<-2:30




ye<-3.321+2.176*x1
lines(x1,ye)
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EXEMPLO 3

Y = tempo necessario para um comerciante estocar uma prateleira da mercearia
com refrigerantes (em minutos)

X = quantidade da mercadoria (em unidades)

Fonte: Montgomery & Peck (1992).

ex3<-read.table("http://www._ufpr_br/~giolo/CE071/Exemplos/Exemplo3s.txt",h=T)
attach(ex3l)

y X
1 10.15 25
2 2.96 6
3 3.00 8
4 6.88 17
5 0.28 2
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plot(x,y, pch=16, col=4)
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cor(x,y)
[1] 0.9973597

S 10 15 20 25 20

cor.test(x,y)

Pearson®s product-moment correlation




data: x and y
t = 49.519, df = 13, p-value = 4.441e-16
alternative hypothesis: true correlation is not equal to O
95 percent confidence interval:
0.9918363 0.9991477
sample estimates:
cor
0.9973597

mod1l<-Im(y~x)
anova(modl)

Analysis of Variance Table
Response: y
Df Sum Sq Mean Sq F value Pr(>F)
X 1 228.318 228.318 2452.1 3.399e-16 ***
Residuals 13 1.210 0.093

Signif. codes: 0 “***” 0.001 “**” 0.01 “*” 0.05 “.”7 0.1 < 7 1
summary(modl)

Residuals:
Min 10 Median 30 Max
-0.4405 -0.1582 -0.1018 0.1357 0.6111

Coefficients:

Estimate Std. Error t value Pr(G|t])
(Intercept) -0.093756 0.143577 -0.653 0.525
X 0.407107 0.008221 49.519 3.4e-16 ***

Signif. codes: 0 “***” 0.001 “*** 0.01 “*” 0.05 “.” 0.1 ©~ ~ 1

Residual standard error: 0.3051 on 13 degrees of freedom
Multiple R-squared: 0.9947, Adjusted R-squared: 0.9943
F-statistic: 2452 on 1 and 13 DF, p-value: 3.399e-16

par(mfrow=c(2,2))
plot(modl, which=c(1:4), add.smooth=FALSE, pch=20)
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shapiro.test(modi$resid)

Shapiro-Wilk normality test
W = 0.9321, p-value = 0.2937

plot(x,y, pch=16, col=4)
Xx1<-1:30
ye<- -0.093756+0.407107*x1
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lines(x1,ye)

12

10

a S 10 15 20 25 30

ite inferior da variacdo de x muito préxima de zero

# 1im
# e faz sentido que quando x = 0 se tenhay =0

mod2<-Im(y~-1 + X) # modelo sem intercepto
summary(mod2)
Call:

Im(formula =y ~ -1 + X)



Residuals:
Min 1Q Median 3Q Max
-0.5252 -0.2198 -0.1202 0.1070 0.5443

Coefficients:
Estimate Std. Error t value Pr(c|t])
x 0.402619 0.004418 91.13 <2e-16 ***

Signif. codes: O “***” 0.001 “*** 0.01 “*” 0.05 “.” 0.1 = ~ 1

Residual standard error: 0.2988 on 14 degrees of freedom
Multiple R-squared: 0.9983, Adjusted R-squared: 0.9982
F-statistic: 8305 on 1 and 14 DF, p-value: < 2.2e-16

anova(mod2)

Analysis of Variance Table
Response: y
Df Sum Sq Mean Sq F value Pr(GF)
X 1 741.62 741.62 8305.2 < 2.2e-16 ***
Residuals 14 1.25 0.09

Signif. codes: 0 “***” 0.001 “*** 0.01 “*” 0.05 “.” 0.1 © ~ 1

par(mfrow=c(2,2))
plot(mod2, which=c(1:4), add.smooth=FALSE, pch=20)



Residuals vs Fitted Maormal Q-Q
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shapiro.test(mod2%$resid)
Shapiro-Wilk normality test

data: mod2%resid
W = 0.929, p-value = 0.2639

par(mfrow=c(1,1))
plot(x,y, pch=16, col=2)
x1<-min(x) :max(x)
ye<-mod2$coef[1]*x1
lines(x1,ye)
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yel<-modl$coef[1]+modl$coef[2]*x1
lines(x1,yel, lIty=4)
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EXEMPLO 4

Y = Renda média mensal sobre vendas de comida em restaurantes (em mil délares)
X = Despesas anual com propagandas (em mil délares)

Fonte: Montgomery e Peck (1992)

rm(list = IsQ))
ex4<-read.table("http://www._ufpr_br/~giolo/CE071/Exemplos/Exemplo4s.txt" ,h=T)
attach(ex4)
ex4
y X

81.464 3.000

72.661 3.150

72.344 3.085

90.743 5.225

A WNPF



5 98.588
6 96.507
7 126.574
8 114.133
9 115.814
10 123.181
11 131.434
12 140.564
13 151.352
14 146.926
15 130.963
16 144.630
17 147.041
18 179.021
19 166.200
20 180.732
21 178.187
22 185.304
23 155.931
24 172.579
25 188.851
26 192.424
27 203.112
28 192.482
29 218.715
30 214.317

plot(x,y,
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cor(x,y)

[1] 0.9777232
cor.test(x,y)

Pearson®s product-moment correlation
data: x and y
t = 24.6482, df = 28, p-value < 2.2e-16

alternative hypothesis: true correlation is not equal to O
95 percent confidence interval:



0.9532193 0.9894611
sample estimates:
cor
0.9777232

modl<-Im(y~x)
anova(modl)

Analysis of Variance Table
Response: y
Df Sum Sq Mean Sq F value

Pr(>F)

X 1 49200 49200 607.53 < 2.2e-16 ***

Residuals 28 2268 81

Signif. codes: 0 “***” 0.001 “**~ 0.01

T ] 0_05 ‘_, 0_1 <

summary(modl)
Call:

Im(formula = y ~ X)
Residuals:

Min 1Q Median 3Q Max
-19.2871 -4.8273 -0.6383 7.3630 16.3512
Coefficients:

Estimate Std. Error t value Pr(c|t])
(Intercept) 49.4434 4.2889 11.53 3.8le-12 ***
X 8.0484 0.3265 24.65 < 2e-16 ***

Signif. codes: 0 “***” 0.001 “**” 0.01

P ] 0-05 ‘-, 0-1 <

Residual standard error: 8.999 on 28 degrees of freedom

Multiple R-squared: 0.9559, Adjusted R-squared: 0.9544

F-statistic: 607.5 on 1 and 28 DF, p-value: < 2.2e-16

par(mfrow=c(2,2))

plot(modl, which=c(1:4), add.smooth=FALSE, pch=20)

shapiro.test(modi$resid)

1

1



Shapiro-Wilk normality test

data: modil$resid
W = 0.9774, p-value = 0.7523
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Xx1<-3:20

ye<-49.4434+8.0484*x1
plot(x,y, pch=16, col=4)
lines(x1,ye,type="1")
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EXEMPLO 5: Dados: trees (Fonte: Disponivel no R)
Y = diametro de arvores (em polegadas)
X = volume de madeira (em pés cubicos)

data(trees)
help(trees)
attach(trees)
trees

Girth Height Volume
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11 11.3
12 11.4
13 11.4
14 11.7
15 12.0
16 12.9
17 12.9
18 13.3
19 13.7
20 13.8
21 14.0
22 14.2
23 14.5
24 16.0
25 16.3
26 17.3
27 17.5
28 17.9
29 18.0
30 18.0
31 20.6

plot(Girth,Volume)
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85
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71
64
78
80
74
72
77
81
82
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87

10.3
10.3
10.2
16.4
18.8
19.7
15.6
18.2
22.6
19.9
24.2
21.0
21.4
21.3
19.1
22.2
33.8
27.4
25.7
24.9
34.5
31.7
36.3
38.3
42.6
55.4
55.7
58.3
51.5
51.0
77.0
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cor(Girth,Volume)
[1] 0.9671194

cor.test(Girth,Volume)

Pearson®"s product-moment correlation
data: Girth and Volume
t = 20.4783, df = 29, p-value < 2.2e-16

alternative hypothesis: true correlation is not equal to O
95 percent confidence interval:



0.9322519 0.9841887
sample estimates:

cor

0.9671194
Fitl<-Im(Volume~Girth)
summary(fitl)

Call:

Im(formula = Volume ~ Girth)
Residuals:

Min 1Q Median 3Q Max
-8.0654 -3.1067 0.1520 3.4948 9.5868
Coefficients:

Estimate Std. Error t value
(Intercept) -36.9435 3.3651 -10.98
Girth 5.0659 0.2474  20.48

Signif. codes: 0 “***” 0.001 “**” 0.01

Pri>1tD)
7.62e-12 ***
< 2e-16 ***

T ] 0-05 ‘-, 0-1 <

Residual standard error: 4.252 on 29 degrees of freedom

Multiple R-squared: 0.9353, Adjusted R-squared: 0.9331

F-statistic: 419.4 on 1 and 29 DF, p-value: < 2.2e-16

anova(fitl)

Analysis of Variance Table
Response: Volume
Df Sum Sq Mean Sq F value

Residuals 29 524.3 18.1

Signif. codes: 0 “***” 0.001 “**” 0.01
> shapiro.test(fitl$res)

Shapiro-Wilk normality test

Pr(cF)
Girth 1 7581.8 7581.8 419.36 < 2.

2e-16 ***

T ] 0_05 ‘_, 0_1 <

1

1



data:

W = 0.9789, p-value = 0.7811

fitl$res

par(mfrow=c(2,2))
plot(fitl, which=c(1:4), add.smooth=FALSE, pch=20)
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podemos tentar melhorar esse modelo?
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TRANSFORMACOES EM Y
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Exemplo2 — Transformacdo Raiz Quadrado em Y

ex2<-read.table("http://www.ufpr.br/~giolo/CE071/Exemplos/Exemplo2s.txt" ,h=T)
attach(ex2)

mod2<-Im(sqgrt(Y)~X1)

par(mfrow=c(2,2))

plot(mod2, which=c(1:4), add.smooth=FALSE, pch=20)
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plot(mod2$fitted.values, mod2%$resid, pch=16)
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mod2$fited values

summary(mod?2)

Residuals:
Min

1Q Median 3Q

Max

-0.59277 -0.25560 0.01804 0.22476 0.81350

Coefficients:

Estimate Std. Error t value
(Intercept) 2.87028 0.11886 24.15
X1 0.19061 0.01075 17.73
Signif. codes: 0 “***” 0.001 “**” 0.01

Pri>1tD
< 2e-16 ***
6.6e-15 ***

cx

0.05 “.” 0.1 *

1



Residual standard error: 0.3625 on 23 degrees of freedom
Multiple R-squared: 0.9318, Adjusted R-squared: 0.9288
F-statistic: 314.2 on 1 and 23 DF, p-value: 6.594e-15
shapiro.test(mod2$resid)

Shapiro-Wilk normality test

data: mod2%resid
W = 0.9794, p-value = 0.8725

require(MASS)
boxcox(Y~X1,data=ex2,plotit=T)
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boxcox(Y~X1,data=ex2, lam=seq(-0.5,1.5,1/10))
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boxcox(Y~X1,data=ex2,plotit=F)

$x

[1] -2.0 -1.9 -1.8 -1.7 -1.6 -1.5 -1.4 -1.3 -1.
[16] -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 O.
[31] 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.
Sy

[1] -96.83566 -95.53286 -94.24200 -92.96237

[7] -89.18172 -87.93706 -86.69782 -85.46232
[13] -81.75969 -80.52043 -79.27594 -78.02549
[19] -74.25647 -73.01738 -71.81411 -70.67886

-91.69314
-84.22875
-76.76964
-69.66004

-90.43331
-82.99519
-75.51119
-68.82601



[25] -68.26562 -68.08184 -68.37491 -69.21697 -70.62856 -72.57098
[31] -74.95981 -77.69050 -80.66194 -83.79002 -87.01158 -90.28253
[37] -93.57378 -96.86716 -100.15195 -103.42240 -106.67591

B
Exemplo 4 — Transformacdes em Y
T

rm(list = Is())
exd<-read.table("http://www.ufpr.br/~giolo/CE071/Exemplos/Exemplods.txt' ,h=T)
attach(ex4)

modl<-Im(y~x)
par(mfrow=c(2,2))
plot(modl, which=c(1:4), add.smooth=FALSE, pch=20)
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mod2<-Im(sqgrt(y)~x)
par(mfrow=c(2,2))
plot(mod2, which=c(1:4), add.smooth=FALSE, pch=20)
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mod3<-Im(log(y)~x)
par(mfrow=c(2,2))

Standardized residuals

Cook's distance
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plot(mod3, which=c(1:4), add.smooth=FALSE, pch=20)
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par(mfrow=c(1,1))
require(MASS)
boxcox(y~x,data=ex4,plotit=T)
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boxcox(y~x,data=ex4, lam=seq(-0.5,1.5,1/10))
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par(mfrow=c(2,2))
mod4<-Im((y"0.6)~x)
plot(mod4, which=c(1:4), add.smooth=FALSE, pch=20)
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shapiro.test(modi$resid)
W = 0.9774, p-value = 0.7523

shapiro.test(mod2%$resid)
W = 0.9612, p-value = 0.3327

shapiro.test(mod3$resid)
W = 0.9593, p-value = 0.2969
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shapiro.test(mod4$resid)
W = 0.9643, p-value = 0.3971

HHAH AR

Exemplo 5 — Transformacdes em Y

HHAH AR H AR AR A

data(trees)
attach(trees)

Fit2<-Im(sqrt(Volume)~Girth)
summary(fit2)

Residuals:
Min 1Q Median 3Q

Coefficients:

Estimate Std. Error t value
(Intercept) -0.55183 0.23719 -2.327
Girth 0.44262 0.01744 25.385

Signif. codes: 0 “***” 0.001 “**” 0.01

Max
-0.56640 -0.19429 -0.01169 0.20934 0.65575

PrCltl)
0.0272 *
<2e-16 ***

€%

0.05 “.” 0.1 *

Residual standard error: 0.2997 on 29 degrees of freedom

Multiple R-squared: 0.9569, Adjusted R-squared: 0.9555

F-statistic: 644.4 on 1 and 29 DF, p-value: < 2_.2e-16

anova(fit2)

Analysis of Variance Table
Response: sqrt(Volume)
Df Sum Sg Mean Sqg F value

Pr(>F)

Girth 1 57.881 57.881 644.42 < 2_.2e-16 ***

Residuals 29 2.605 0.090

Signif. codes: 0 “***> 0.001 “**~ 0.01

L ]

0.05 “.” 0.1 *

1

1



shapiro.test(fit2%res)

Shapiro-Wilk normality test
data: Tfit2%res
W = 0.9858, p-value = 0.9457

par(mfrow=c(2,2))
plot(fit2, which=c(1:4), add.smooth=FALSE, pch=20)
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Standardized residuals
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boxcox(Volume~Girth,data=trees,plotit=T)
boxcox(Volume~Girth,data=trees, lam=seq(-0.5,1.5,1/10))
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bc<-boxcox(Volume~Girth,data=trees,plotit=F)
cbind(bc$x,bcsy)

[.1] [.2]
[1,] -2.0 -137.69639
[2,] -1.9 -135.43059
[3,] -1.8 -133.16051
[4,] -1.7 -130.88450
[5,] -1.6 -128.60076
[6,] -1.5 -126.30727
[7,] -1.4 -124.00186
[8,] -1.3 -121.68223



[9,] -1.2 -119.34600
[10,] -1.1 -116.99079
[11,] -1.0 -114.61444
[12,] -0.9 -112.21525
[13,] -0.8 -109.79244
[14,] -0.7 -107.34678
[15,] -0.6 -104.88164
[16,] -0.5 -102.40450
[17,] -0.4 -99.92915
[18,] -0.3 -97.47883
[19,] -0.2 -95.09024
[20,] -0.1 -92.81840
[21,] 0.0 -90.74102
[22,] 0.1 -88.95991
[23,] 0.2 -87.59521
[24,] 0.3 -86.76836
[25,] 0.4 -86.57447
[26,] 0.5 -87.05365
[27,] 0.6 -88.17730
[28,] 0.7 -89.85812
[29,] 0.8 -91.97739
[30,] 0.9 -94.41372
[31,] 1.0 -97.06207
[32,] 1.1 -99.84112
[33,] 1.2 -102.69275
[34,] 1.3 -105.57791
[35,] 1.4 -108.47175
[36,] 1.5 -111.35941
[37,] 1.6 -114.23277
[38,] 1.7 -117.08805
[39,] 1.8 -119.92427
[40,] 1.9 -122.74207
[41,] 2.0 -125.54309

Fit3<-Im((Volume™0.4)~Girth)
par(mfrow=c(2,2))
plot(fit3, which=c(1:4), add.smooth=FALSE, pch=20)
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B
Exemplo 6 — Linearizacéo
Y = numero médio de bactérias sobreviventes
em um produto alimenticio enlatado
X = minutos de exposicdo a 300° F
Fonte: Montgomery & Peck (1992).



HHAHHHH AR

y<-c(175,108,95,82,71,50,49,31,28,17,16,11)
X<-1:12
cbind(y,x)

~
=
O©CO~NOUAWN PR X

[10,] 17 10
[11.] 16 11
[12,] 11 12

plot(x,y, pch=16, col=2)
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cor.test(x,y)

yt<-log(y)

plot(x,yt, pch=16, col=2)
cor.test(x,yt)

Pearson®s product-moment correlation

data: x and yt
t = -23.4591, df = 10, p-value = 4.489e-10
alternative hypothesis: true correlation is not equal to O
95 percent confidence interval:
-0.9975654 -0.9672859
sample estimates:
cor
-0.9910365
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modl<-Im(yt~x)
summary(modl)
Call:
Im(formula = yt ~ x)
Residuals:
Min 1Q Median 3Q Max

-0.184303 -0.083994 0.001453 0.072825 0.206246

Coefficients:
Estimate Std. Error t value Pr(G|t])
(Intercept) 5.33878 0.07409 72.05 6.47e-15 ***



X -0.23617 0.01007 -23.46 4.49e-10 ***

Signif. codes: 0 “***” 0.001 “*** 0.01 “*” 0.05 “.” 0.1 “ ~ 1

Residual standard error: 0.1204 on 10 degrees of freedom
Multiple R-squared: 0.9822, Adjusted R-squared: 0.9804
F-statistic: 550.3 on 1 and 10 DF, p-value: 4.489e-10

anova(modl)
Analysis of Variance Table
Response: yt
Df Sum Sq Mean Sq F value Pr(cF)
X 1 7.9761 7.9761 550.33 4.489e-10 ***
Residuals 10 0.1449 0.0145

Signif. codes: O “***” 0.001 “**” 0.01 “*” 0.05 “.” 0.1 < ~ 1
par(mfrow=c(2,2))
plot(modl, which=c(1:4), add.smooth=FALSE, pch=20)
shapiro.test(modl$resid)
Shapiro-Wilk normality test

data: modl$resid
W = 0.9852, p-value = 0.9968
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par(mfrow=c(1,2))
xe<-min(x) :max(x)
yte<-modi$coef[1] + modi$coef[2]*xe
plot(x, yt, pch=16, col=4, ylab="In(y)")
lines(xe, yte)
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plot(x, y, pch=16, col=4, ylab="In(y)")
ye<-exp(modl$coef[1])*exp(modl$coef[2]*xe)
lines(xe, ye)
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Exemplo 7 — Transformacdo em X

Y = energia elétrica gerada por um moinho de vento

X = velocidade do vento (em MPH)

Fonte: Montgomery e Peck, 1992.

HHHHH R R R R R R R R R R R

rm(list = Is())
ex7<-read.table("http://www.ufpr_br/~giolo/CE071/Exemplos/Exemplo7s.txt",h=T)
attach(ex7)

plot(x,y, pch=16)
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## transformacao em x: procedimento de Box-Tidwell
## chute inicial: alpha0 = 1

mod1l<-Im(y~x)

summary(modl)
Residuals:

Min 1Q Median 30 Max
-0.59869 -0.14099 0.06059 0.17262 0.32184
Coefficients:

Estimate Std. Error t value Pr(c|t])
(Intercept) 0.13088 0.12599 1.039 0.31

X 0.24115 0.01905 12.659 7.55e-12 ***



Signif. codes: 0 “***” 0.001 “**” 0.01 “*” 0.05 “.” 0.1 “ ~ 1

Residual standard error: 0.2361 on 23 degrees of freedom
Multiple R-squared: 0.8745, Adjusted R-squared: 0.869
F-statistic: 160.3 on 1 and 23 DF, p-value: 7.546e-12

w<-x*log(x)
mod2<-Im(y~x+w)
summary(mod2)

Residuals:
Min 10 Median 30 Max
-0.223004 -0.029442 0.009955 0.048323 0.181553

Coefficients:

Estimate Std. Error t value Pr(G|t])
(Intercept) -2.41684 0.28512 -8.477 2.23e-08 ***
X 1.53443 0.14189 10.814 2.85e-10 ***
w -0.46260 0.05065 -9.132 6.13e-09 ***

Signif. codes: 0 “***” 0.001 “*** 0.01 “*” 0.05 “.” 0.1 © ~ 1

Residual standard error: 0.1103 on 22 degrees of freedom
Multiple R-squared: 0.9738, Adjusted R-squared: 0.9714
F-statistic: 408.9 on 2 and 22 DF, p-value: < 2.2e-16

alphal<-(mod2%coef[3]/modl$coef[2]) + 1
alphal
-0.918302

x1<-x"alphal
modl1l<-Im(y~x1)
summary(mod11)

Residuals:
Min 10 Median 30 Max
-0.19539 -0.06179 0.01245 0.07813 0.12392



Coefficients:

Estimate Std. Error t value
(Intercept) 3.10386 0.04748 65.38
x1 -6.67842 0.19538 -34.18

Signif. codes: 0 “***” 0.001 “**” 0.01

PrC>tl)

<2e-16 ***
<2e-16 ***

“*? 0.05 “.

> 0.1 ©

Residual standard error: 0.09258 on 23 degrees of freedom

Multiple R-squared: 0.9807, Adjusted R-squared: 0.9799

F-statistic: 1168 on 1 and 23 DF, p-value: < 2.2e-16

wl<-x1*log(x1)
mod22<-Im(y~x1+wl)

summary(mod22)

Call:

Im(formula = y ~ x1 + wl)
Residuals:

Min 1Q Median 30 Max
-0.18507 -0.07049 0.01960 0.06727 0.12975
Coefficients:

Estimate Std. Error t value Pr(c|t])
(Intercept) 3.2409 0.2708 11.968 4.18e-11 ***
x1 -6.4445 0.4962 -12.987 8.58e-12 ***
wl 0.5994 1.1652 0.514 0.612
Signif. codes: O “***” 0.001 “**” 0.01 “*” 0.05 “.” 0.1 °

Residual standard error: 0.0941 on 22 degrees of freedom

Multiple R-squared: 0.9809, Adjusted R-squared: 0.9792

F-statistic: 565.6 on 2 and 22 DF, p-value: < 2_.2e-16

alpha2<-(mod22$coef[3]/mod11$coef[2]) + alphal

alpha2

1

1



-1.008055

# transformacao indicada: x*! = 1/x

xt<-1/x
plot(xt,y, pch=16,col=2)
mod3<-Im(y~xt)

Max

Pr(>
<2

summary(mod3)
Residuals:
Min 1Q Median 3Q
-0.20547 -0.04941 0.01100 0.08352 0.12204
Coefficients:
Estimate Std. Error t value
(Intercept) 2.9789 0.0449 66.34
Xt -6.9345 0.2064 -33.59

Signif. codes: 0 “***” 0.001 “**” 0.01

<2

€ x

Ith
e-16 ***
e-16 ***

0.05 “.” 0.1 *

Residual standard error: 0.09417 on 23 degrees of freedom

Multiple R-squared: 0.98,

Adjusted R-squared: 0.9792

F-statistic: 1128 on 1 and 23 DF, p-value: < 2_.2e-16

par(mfrow=c(2,2))

plot(mod3, which=c(1:4), add.smooth=FALSE, pch=20)

shapiro.test(mod3$resid)

Shapiro-Wilk normality test
data: mod3%$resid
W = 0.9292, p-value = 0.0835

1
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plot(xt,y, pch=16, col=4, xlab="1/x")

xe<-seq(0,0.41,by=0.05)

ye<-mod3$coef[1]+mod3$coef[2]*xe

lines(xe,ye)
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Exemplo 4: Minimos Quadrados Ponderados

rm(list = Is())
exd<-read.table("http://www.ufpr.br/~giolo/CE071/Exemplos/Exemplods.txt" ,h=T)
attach(ex4)

modl<-Im(y~x)

par(mfrow=c(1,2))

plot(x, modl$resid, pch = 20)

plot(modi$fitted, modi$resid, pch = 20)
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¥ mod1$fitted

ml<-mean(x[1:3])
sl<-var(y[1:3]D)
m2<-mean(x[4:5])
s2<-var(y[4:5])
m3<-mean(x[7:11])
s3<-var(y[7:11])
m4<-mean(x[13:16])
s4<-var(y[13:16])
m5<-mean(x[18:23])
sb<-var(y[18:23])
m6<-mean(x[24:25])
s6<-var(y[24:25])
m7<-mean(x[27:30])
s7<-var(y[27:30])
medias<-as.vector(c(ml,m2,m3,m4,m5,m6,m7))



s2<-as.vector(c(sl,s2,s3,s4,s5,s6,s57))

medias

[1] 3.078333 5.287500 8.955000 12.377500 15.095000 16.650000 19.262500
s2

[1] 26.79462 30.77201 52.80369 77.28016 120.57106 132.38899 138.85687

plot(medias, s2, pch=16, col=4)
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Im(s2~medias)

Coefficients:
(Intercept) medias
-7.376 7.820

auxX<--7.376+7.820*x
wi<-1/aux



wi

[1] 0.062173589 0.057947500 0.059706126 0.029865456 0.029018311 0.024846079
[7] 0.016021148 0.015842513 0.016101841 0.015971124 0.015872008 0.012293787
[13] 0.011284835 0.011161711 0.011041245 0.011250087 0.010024259 0.009097194
[19] 0.008985331 0.009100431 0.009064950 0.008969575 0.009001143 0.008064516
[25] 0.008220034 0.007572625 0.006891134 0.007004371 0.007081952 0.006947291

mod3<-Im(y~x,weights=wi)

summary(mod3)
Residuals:

Min 1Q Median 3Q Max
-2.0214 -0.7388 -0.1134 0.8181 1.6763
Coefficients:

Estimate Std. Error t value Pr(G|t])

(Intercept) 50.9746 2.5073 20.33 <2e-16 ***
X 7.9222 0.2532 31.28 <2e-16 ***

Signif. codes: 0 “***” 0.001 “*** 0.01 “*” 0.05 “.7 0.1 © ~ 1

Residual standard error: 0.9619 on 28 degrees of freedom
Multiple R-squared: 0.9722, Adjusted R-squared: 0.9712
F-statistic: 978.6 on 1 and 28 DF, p-value: < 2.2e-16

anova(mod3)

Analysis of Variance Table
Response: y
Df Sum Sq Mean Sq F value Pr(cF)
X 1 905.50 905.50 978.63 < 2.2e-16 ***
Residuals 28 25.91 0.93

Signif. codes: 0 “***” 0.001 “*** 0.01 “** 0.05 “.7 0.1 © ~ 1

rgwi<-sqrt(wi)
we<-rqwi*mod3$resid
WX<-rqwi*x



wy<-rgwi*mod3$fitted.values
plot(wy,we, pch=16)
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modl<-Im(y~x)

mod2<-Im(sqrt(y)~x)
mod3<-Im(y~x,weights=wi)
par(mfrow=c(1,3))
plot(modl$fitted.values,modl$resid)
plot(mod2$fitted.values,mod2$resid)
plot(wy,we)



mod1fresid

Modelo sem transformacao
Método estimagao - Gk

Modelo com transformacgao N
Metodo estimagao - Gk
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Modelo com pesos
Metodo estimagao: GMP
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mocl! Ffitted values

par(mfrow=c(1,2))

plot(x,sqrt(y), pch=16,col=2)

xe<- min(x) :max(x)

ye2<- mod2$coef[1]+mod2Scoef[2]*xe
ye3<- mod3$coef[1]+mod3$coef[2]*xe
lines(xe,ye2)

title(y™0.5 = 7.8079 + 0.3454*x')
plot(x,y, pch=16,col=2)
lines(xe,ye3)

title(y = 50.975 + 7.922*x™)

moci2Efitted values
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sqrify)
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y*0.5 = 7.8079 + 0.3454*x
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y = 30.973 + 7.922*x




