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Variáveis Aleatórias Contínuas
• A probabilidade, no caso contínuo é caracterizada a partir de

uma função positiva denominada densidade de probabilidade
“A densidade não é uma probabilidade, mas uma função
matemática”

• Definição: f (x) é uma função contínua de probabilidade ou
função densidade de probabildiade de uma variável aleatóriafunção densidade de probabildiade de uma variável aleatória
contínua X, se:
–

– A área definida por f(x) é igual a 1.

– O cálculo de probabilidade é definido como:
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Cálculo de Probabilidade

a b

• A probabilidade é definida como a área 
entre os pontos a e b.



Modelo Normal 
ou Curva de Gauss  ou Curva de Gauss  



K.F. Gauss (Alemanha, 1777-1855)



Distribuição normal 
ou curva de Gauss

• Definida por dois 
parâmetros: a média 
e o desvio padrão

• Simétrica em torno da • Simétrica em torno da 
média

• Largura, ou 
amplitude, da curva 
determinada pelo 
desvio padrão



Histograma
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Histograma suavizado
• A área sob a 

curva é igual à 
soma das 
áreas dos 
retângulos do 
histograma. 
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• Isto é, a área 

sob a curva 
compreende 
100% dos 
dados.
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Exemplos

• Estatura de adultos
• Peso de nascimento
• Comprimento da raiz 

do dente

• Segundo sexo
• Segundo sexo

do dente
• Perímetro cefálico
• Distância
• Tempo de efeito de 

um anestésico tópico

• Segundo raça

• Segundo princípio 
ativo



Modelo



Função matemática que gera a 
distribuição Normal
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Modelo

• Flexível � Possibilita adaptações.
• Mínimo � Economia de parâmetros:
• Simétrico em torno da origem �

Facilidade de leitura e de interpretação.Facilidade de leitura e de interpretação.



Distribuição normal 
ou curva de Gauss

• Definida por dois parâmetros: 
A média e o desvio padrão.

• É simétrica em torno da média, • É simétrica em torno da média, 
seu ponto central.

• Largura (amplitude) da curva 
determinada pelo desvio 
padrão.



Felizmente, 

• Existe uma 
tabela pronta 
para ser para ser 
consultada.



Distribuição Normal Z (0, 1) , 
padrão ou reduzida

99%



Variável contínua com 
média e desvio-padrão





Leitura da tabela
• 1ª. Coluna – inteiro e a primeira decimal.



Leitura da tabela
• Cabeçalho das colunas – segunda 

decimal



Corpo da tabela – probabilidade da 
cauda superior direita

Cauda 
superior 
direita



Distribuição Normal

• Regularidade
• Distribuição simétrica 

em torno da média
• Distâncias medidas 

em desvios padrão.em desvios padrão.
• Acima da média 
�Valores positivos

• Acima da média 
�Valores 
negativos



Distribuição normal 
ou curva de Gauss

• Por se tratar de um modelo, 
permite também a avaliação do 
que se distancia ou se desvia que se distancia ou se desvia 
deste modelo.



Aplicações do modelo de 
Distribuição normal

• - Determinação de faixas de 
valores de referência de medidas valores de referência de medidas 
contínuas (reference ranges)



Aplicações do modelo de 
Distribuição normal

• - Definição de grupos e sub-grupos em • - Definição de grupos e sub-grupos em 
escalas padronizadas



Aplicações do modelo de 
Distribuição normal

• - Distribuição amostral de médias –
Teorema Central do Limite. Teorema Central do Limite. 

• - Modelo teórico para determinação de 
tamanhos de amostras 



Exercício

• X: pressão sanguínea diastólica
• Distribuição Normal 

• Média µ = 77 mmHgµ
• Desvio padrão σ = 11,6 mm Hg



Exercício a) Probabilidade da pressão ser inferior 
a 60 mmHg

Temos que: 
�60 – 77 = - 17

� - 17 / 11,6 = - 1,46

• Então, 
• Pr(Z< -1,46) = 0,0721

� - 17 / 11,6 = - 1,46



Exercício 18 b)

Temos que: 
�90 – 77 = 13

� 13 / 11,6 = 1,12

• Então, 
• Pr(Z> 1,12) = 0,1314

� 13 / 11,6 = 1,12



Exercício 18 c)

Temos que: 
�Pr (Z<90) = 0,8686
�Pr (Z <60) = 0,0721

• Então, 
• Pr(60<X<90) = 
• 0,8686 – 0,0721 = 
• 0,7965• 0,7965



E, por hoje, é só.
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Cálculo de Probabilidade
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• A probabilidade é definida como a área 
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Histograma suavizado
• A área sob a 

curva é igual à 
soma das 
áreas dos 
retângulos do 
histograma. 
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