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Maintenance of a deteriorating system is often imperfect, with the state of the system
after maintenance being at a level somewhere between new and its prior condition. In
this paper, the concept of reduction in virtual or effective age is used to model the effect of
both imperfect corrective maintenance (CM) and imperfect preventive maitnenance (PM).
Results from counting-process theory then produce a likelihood function necessary for
parameter estimation, and the method is tested on known maintenance data. Finally, it is
shown how to evaluate, by simulation, the expected number of system failures up to time ¢
under a given periodic PM strategy. This measure is incorporated into a cost rate function
which is then minimized to find the optimal length of a PM interval and the optimal number
of PMs to carry out before system replacement.

1. Introduction

A system is observed over time ¢ > 0. Ateach system failure, corrective maintenance (CM)
or repair is performed, and preventive maintenance (PM) is also carried out, on occasions to
try and reduce system deterioration. Both types of maintenance action take negligible time
to complete and are imperfect in the sense that the system’s virtual or effective age after
maintenance lies somewhere between zero (good-as-new) and its prior level (bad-as-old).

Kijima et al. (1988) first used the concept of reduction in virtual age to model the be-
haviour of a system with imperfect CM, no PM, and periodic replacement. Liu ez al. (1995)
modelled imperfect periodic PM using the concept of virtual age reduction, but assumed
only minimal or bad-as-old CM. However, both these papers were optimization-based and
did not deal with parameter-estimation problems. Jack (1997) developed statistical tech-
niques for analysing event data from a system subject to minimal CM and known, but not
necessarily periodic, imperfect PM.

In this paper, the effects of both types of imperfect maintenance are modelled using the
age-reduction concept. Different age-reduction ‘factors’ §cy and 8py are used for the two
types of maintenance, and two alternative models are proposed.

In model I, it is assumed that:

(i) the system’s virtual age after the present CM action equals its virtual age after the
previous maintenance action (CM or PM) plus é¢cp times the chronological age ac-
cumulated since that previous maintenance;

(ii) the system’s virtual age after the present PM action equals its virtual age after the
previous PM action plus dpy times the virtual age accumulated since the previous
PM.

Note that, in the case of age reduction at PM, §pp is applied to virtual age accumulated
since it is possible that intermediate CM has reduced the corresponding chronological age.
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Alternatively, in model 11, it is assumed that

(i) the system’s virtual age after the present CM action equals 8¢y times its virtual age
before the present CM;

(ii) the system'’s virtual age after the present PM action equals dpp times its virtual age
before the present PM.

At CM, only the small part of the system that has failed is repaired or replaced. At PM,
however, repairs and replacements can be carried out on several system parts, and it is
therefore assumed that, in general, 8pyy < 3. Note also the two extreme values for the
age-reduction factors: dpm = 0, which implies perfect (good-as-new) PM, and §cmq = 1
which implies minimal (bad-as-old) CM.

Given information on the occurrence times of previous CM and PM, the system’s virtual
age at any given time is then determined, and it is shown how to construct a likelihood
function to provide estimates (with confidence intervals) of the relevant system lifetime
distribution parameters, and the age reduction factors cy and dpwm, for both models. An
example with known maintenance data is given to illustrate the method, and it is also shown
how to use simulation techniques to estimate the system’s expected failure count function
and then find optimal periodic PM and replacement intervals.

2. Age reduction models
Suppose that the system is observed over k PM intervals. The following notation is needed
for both models
t;; = time of ith failure in the jth PMinterval (j = 1, ..., k;i = 1, ..., nj),
to, =time of (j — I)thPM (to) =0 and to; = t5,_,41.j-15 J = 2, ..., k),
v;; = virtual age following ith repair in the jthPMinterval (j = 1, ..., k; i = 1, ..., n}),
vo; = virtual age following (j — )thPM (j =2, ..., k), with vy = 0.
The system’s virtual age at time ¢ is therefore given by
v(t)=v,-_|_,-+t—t,_|,j for t,-_IJSI < b (G=1,..,k i=1,...,nj). 4))
If model I is used for both types of maintenance action, then
vij = Vi—1y + emlti; — ticr.p),
Voj = Vo j~1 + 8pM(Vn,_, j-1 — Vo.j-1 + toj = In;_.j=1), )
while, for model II, we have
vij =8cmUi-1.; +tij — ti-1.j),
voj =8pM(Vn,_, j—1 + toj =, ,.j-1)- 3
Note that, in the case of minimal CM (8cy = 1), result (1) simplifies to
v(t) =1 —(toj —vo;) for toy <t <o (J=1,..,k),
where vy; = dpmty; for model I and vp; = Z:,C,l i (o j—i+1 — to_j—i) for model I1.

In the case of perfect PM (8pm = 0), result (1) holds with vp; = 0 and v;; = dem{(fij—to5)
for model 1and v;; = }")_, 85y (tizi41.; — ti—1.j) for model IL.
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3. Point process model for system failures

From Lawless & Thiagarajah (1996), the conditional (or complete) intensity function for
the point process of system failures is defined by

. . ADIH
u(t: Hy) = lim Pr{a failure in (¢, t + At)| ,}, @
Ar10 At

where H; is the history of the failure process up to time ¢.

Assuming no more than one failure can occur in time At, it follows that u(t; H,) At
gives the expected number of failures occurring in (¢, t + At) with u(z; H,) the rate of
occurrence of failures at t given the previous history of failures up to t.

Now, the chance of a failure at time ¢ in both our imperfect-maintenance models depends
only on the system’s virtual age. Hence, using result (1),

u(t, H)y =rlv®)] =r(ioyj+t —tioyy) fortioy, <t <y, &)

where r(x) is the hazard rate function for the time to first system failure.

If N(t) denotes the number of failures occurring up to time ¢, then M (¢) = E{N(#)} is
termed the expected failure count function and m(t) = M’(t) = limg, 0 E{%MH
the rate of occurrence of failures at t. For general écyq and Spm, m(t) and u(t; H;) are
distinct functions.

However, closed-form expressions for M (¢) exist in some special cases. For example,
with periodic PMs at times jT (j = 1, 2, ...) and minimal CM (6cy = 1), we have

j—1

M@ T) =Z[R(v0i+T)-R(vm)]+R(voj'+f—(j~1)7)—R(001) for(j—DT <t < jT,
i=l

. ©)

where vy = (i — DT (Model D, vy = ({52)&mT (Model ID, and

R(x) = foJr r(u)du is the corresponding cumulative hazard function. Note that the pre-
vious notation for the expected failure count function has now been extended to indicate
the dependence on T.

Note also that, for perfect PM (8py = 0), result (6) reduces to the simple form

M@ T)=(G - DRT)+ Rt - (j—1DT) for(j— DT <t < jT. 0

For general §cp and dpy, M (t; T) has to be estimated by simulation and this will be dis-
cussed in section 5.

EXAMPLE 1 Suppose that the time to first failure (in hours) has a Weibull distribution
with R(x) = (0.001x)%°, T = 1000, cm = 1, and 8py = 0.2. Figure 1 shows the graphs
of the function M (¢; T) given in result (6) for model I and model II. Notice that, as ¢
increases, the expected number of system failures for model II is smaller.
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FIG. 1. Expected failure count functions under minimal CM

4. Parameter estimation

If observation of the system’s behaviour ceases at failure time t,, x then, using Anderson et
al. (1993), the likelihood function is given by

k ny 'lt.k
LB, ..., Omi Scm, Som) = [ [ [Tty Hyy) exp [—/ u(t; H,)dt] . ®
0

j=1i=l

where 0y, ..., 0, are the parameters of the distribution of X, the time to first system fail-
ure.

Using results (1) and (5), and assuming that X, is Weibull with r (x) = A8(Ax)?~! and
R(x) = (Ax)?, where A > 0 and 8 > 0, it follows that the corresponding log-likelihood is

[ T
£(2, B; 6cm, bpm) = Z Zln r(viry +tij — i)

i=1 i=1
k-1 n;+1

t
—Z / r(Ui—j+t—tiy;)de
ting

j=1 i=1

Ll it
—Z/ r(uicyj+t—t_y ;)de

i=] Y-
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k k ay
=(ﬂln/\+1nﬂ)2n1 + (B - I)Zzln(v,—l., +tij —tio1j)

j=1 j=1i=1
k=1 nj+1
-af l [(vi—l.j +1; =ty )P - U,P_,J]
J=1 il
nt
+ }: [(Ui—l‘k + tix = tic1x)f — U,p_l_k]] . ©
1=1

Note that, if a number of identical systems are observed and the CM and PM times
recorded, then the corresponding log-likelihood is just a sum of functions of the form
given in result (9). This is the case in the example below.

The maximum-likelihood estimates (MLEs) A, ,3 dcm, and dpy can be found by direct
maximization of £ (or, equivalently, by minimizing —£) using the Nelder-Mead simplex
algorithm (Press et al. (1992)) implemented in NAG routine EO4CCF. Before the method
is used, however, the transformations

5CM JPM
AM=Ink, B =InB, & =ln(—),5’ =ln( )
.B ﬂ CM 1 ‘5CM PM 1 —lsPM

need to be made to ensure that all parameters have range (—o0, 00).

Provided the number of observed CM times and PM times is large, the likelihood-ratio
test statistic for each parameter is approximately x2-distributed with 1 degree of free-
dom. This provides an efficient method for obtaining confidence intervals (Doganaksoy &
Schmee 1993).

The likelihood ratio statistic for A is defined by

Wi(h) = =2[ ¢, Bi Bowm, dom) ~ €, B3 Bew, B | (10)

where B, dcm, and dpy are the MLEs of B, 8cm, and dpy for a fixed value of A. A
100 (1 — a)% confidence interval for A therefore consists of the set of values of A for
which Wi (A) < x2(1; 1 — @), the 1 — a quantile of the x? distribution with 1 df. The
corresponding lower and upper likelihood-ratio (LR) confidence limits for A are the two
values A and Ay that satisfy

e(r, B Som, Som) = €A, B, dcm, Bem) — $x2(15 1 — ). an

The left-hand side of equation (11) gives the profile log-likelihood function for A and the
right-hand side is a constant. A, and Ay are found by successive evaluation of this function
until the equation is satisfied. Similar results to (10) and (11) apply to obtain 100 (1 — a)%
LR confidence limits for B, 8cp, and Spu.

EXAMPLE 2 We considered Baker’s (1991) CM and PM data from medical equipment
(syringe-driver infusion pumps) used in a large teaching hospital. A sample of 9 of the
pumps produced a total of 80 CM times and 30 PM times. Jack (1997) used this same
data assuming minimal CM and imperfect PM. The following parameter estimates, 95%
confidence limits and maximized log-likelihood were obtained using Model I for both CMs
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and PMs
A = 0.000958, AL = 0.000811, Ay =0.00120,
B =211, BL = 2.0, By = 3.45,
dcm = 1.000, 8ky = 0953,  8Y, = 1.000,
pm = 0.512, 8y = 0361, 84, =0.759,

e(x, B, dcm, Sem) = —524.06.

The corresponding values using Model II for both types of maintenance were:

A = 0.000946, AL = 0.000786, Ay = 0.00121,
B =248, BL =187, By = 3.18,
8cm = 1.000, sk =03896,  8Y, = 1.000,
dpm = 0.789, sh, =0.643, Y, =0987,

2(x, B, 8cm, Bpm) = —526.01.

These results validate Jack’s (1997) assumption of minimal CM for this equipment.

5. Simulating system behaviour

Let X;j = T;; — T;_, be the random variable representing the time between the (i — 1)th
and the ith failure in the jth PM interval. Suppose that X;; (the time to first system failure)
has survivor function F(x) = Pr(X;, > x), hazard rate function r(x) = —F’(x)/i‘(x),
and cumulative hazard function R(x) = foJr r(u)du. It follows that X;; has conditional
survivor function

Fuis1j +x)
ﬁ(vl—l.j)

If u;; denotes a uniform (0,1) variate, then the inversion method for random variate gener-
ation (Dagpunar 1988) gives

Pr{Xij > x[v,—y 5} = =exp{—[R(i-1; +x) — R I} (12)

exp{—[R(vi—1j + x) = R(v,1 DI} = uy,

or
x = —vi_1,; + RTRi-1 ) — Inuy;l.

The required generator for system failure times T;; = T,_; ; + x is therefore
Tij=Tiovj —vicij+ RT'Ri— ) —Inujl =1,k i=1,..,n). (13)

Assuming periodic PMs with period 7', it follows that n; is the largest i such that T;; < jT.
Now, if X1) is Weibull with F(x) = exp{—(Ax)#}, then R(x) = (Ax)? is easily invert-
ible, and it is straightforward to compute the system failure times from result (13). M (¢; T),



AGE-REDUCTION MODELS FOR IMPERFECT MAINTENANCE 353

TABLE 1
Optimal values of T and & for model I

dm T* k* C(T* k*) %increase

1.0 700 5 0.0669

09 700 5 0.0656 0.00
08 700 6 0.0643 0.31
07 700 6 0.0629 1.11
06 875 5 0.0611 245
05 1225 4 0.0592 422

the expected failure count function for the system, can be estimated by performing a large
number of independent simulations (10000, say) of the failure process and then computing
the average number of failures occurring up to time ¢ for each ¢t > 0. The accuracy of the
estimate, M (t; T), was tested against the known forms of the function given in results (6)
and (7), producing agreement to three significant figures over an interval of 5 PM cycles
with R(x) = (0.001x)%3 and T = 1000.

The use of this simulation estimate to determine optimal PM and replacement intervals
for the system will now be discussed.

6. Optimal preventive maintenance and replacement

Suppose the system is subjected to periodic PM at times j7 (j = 1, ...,k — 1), and then
replaced by a new one after time kT, and let ¢g, ¢}, and ¢z denote the costs of a replacement,
a PM, and a CM, respectively. Using result (6), i.e. assuming minimal CM, Lui et al. (1995)
computed optimal values of 7 and K by minimizing the long-run expected total cost per
unit time:

C(T. k) = co+ k- l)c;c;- cMKT; T) (14)

The simulation estimate M (kT; T) discussed in section 5 can be used to compute the
corresponding optimal values for the case of general écp.

EXAMPLE 3  Suppose that X ; (in hours) is Weibull with R(x) = (0.001x)?3 (E(X)) =
887 hours) and PMs can only be carried out at multiples of T = 175 hours (= T = nTy
(n=1,2,..)is discrete). Let ¢ = 100, ¢; = 10, ¢c; = 20, and dpy = 0.2. Table 1 shows
the optimal maintenance policy according to model I when 8cm varies from 1 down to
0.5. The values of the two discrete decision variables were found using a simple numerical
search procedure. The last column in the table shows the percentage increase in cost rate
when the minimal CM (§cy = 1) policy, T = 700 and k = 5, is used instead of the
appropriate optimal policy. It can be seen that 8¢y has to be much less than 1 before the
effect of using the incorrect policy is significant.
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7. Conclusions

This is the first paper to model the effect of both imperfect CM and imperfect PM using
the concept of reduction in virtual or effective age. Simulation, optimization, and statistical
models are all developed. A simulation algorithm is given which generates system failure
times under a given periodic PM strategy. The expected number of failures the system will
experience up to any given time can then be estimated, and optimal PM and replacement
times found. However, this optimization procedure relies on the availability of parameter
estimates for the system’s lifetime distribution and the age reduction factors for both CM
and PM. Statistical techniques are given to obtain these estimates and their confidence
intervals from given maintenance data.
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