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A major aspect of analysis of failure data for repairable systems is the testing for a
possible trend in interfailure times. This paper reviews some important and popular
graphical methods and tests for the nonhomogeneous Poisson process model. In
particular, the total time on test (TTT) plot is considered, and trend tests based on the
TTT-statistic are motivated and derived. In particular, a test based on the Anderson—
Darling statistic is suggested. The tests are evaluated and compared in a simulation
study, both with respect to the achievement of correct significance level and rejection
power. The considered alternatives to ‘no trend” are the log-linear, power law and a
class of bathtub-shaped intensity functions. The simulation study involves single
systems, as well as the case where several independent systems of the same kind are

observed. © 1998 Elsevier Science Limited.

1 INTRODUCTION

For maintained and repairable systems it is important to
detect possible changes in the pattern of failures. For
example, reliability growth corresponds to times between
failures becoming longer as time goes, whereas various
aging effects lead to shorter interfailure times.

In practice, decisions concerning the failure pattern have
to be based on observed failure data and statistical methods.
It is the purpose of this paper to study methods for trend
testing in failure data from repairable systems.

Fig. 1 illustrates the failure process observed for a single
repairable system put into operation at time ¢t = 0. The
successive failure times 7', T5,... are often called the arrival
times, while the times between failures, X, X,,... are called
the inter-arrival times. In Fig. 1, the repair times are set to O,
as will be done throughout the paper. This is a reasonable
assumption if the repair times are negligible compared to the
inter-arrival times, and can in any case be justified if we let
the time scale be operating time. The failures are assumed to
be point events occurring in instants of time.

We say that there is a trend in the pattern of failures if the
inter-arrival times tend to alter in some systematic way,
which means that the inter-arrival times are not identically
distributed. The question we wish to answer is whether such
an alteration is statistically significant or not.

A trend in the pattern of failures can be either monotonic
or non-monotonic. In the case of a monotonic trend the
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system is said to be improving if the inter-arrival times
tend to get longer (a decreasing trend), and the system
is said to be deteriorating if the inter-arrival times tend
to get shorter (increasing trend). Various types of non-
monotonic trend can be present, in particular we mention
the cases of cyclic trend and bathtub trend. If the inter-
arrival times tend to alter in some cyclic way between
longer and shorter, we have a cyclic trend. A pattern of
failures is said to have a bathtub trend if there is a decreas-
ing trend in the beginning, then a period with no apparent
trend, and finally an increasing trend at the end of the
observation interval.

Perhaps the most common type of trend in the pattern
of failures from a mechanical system is increasing or bath-
tub-shaped trend. A typical example of a system with
decreasing trend is a software system, and systems exposed
to seasonal or other cyclic varying stresses might have a
cyclic trend.

The following argument explains why bathtub trend often
is plausible: When a system is new there are often ‘infant
illnesses’ present, and as these are weeded out we observe a
decreasing trend. After the ‘infant illness’ phase the system
reaches the ‘useful life’ phase characterized by no trend.
Finally, as the system gets old the ‘wear-out’ phase with
increasing trend occurs.

Ascher and Feingold' point out that since we only can
observe a process during a limited time interval, it is diffi-
cult to know whether the trend we have observed propagates
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into the future or not. For example, assume that we have
detected a significant increasing trend in our data. Then we
should bear in mind that we really do not know whether the
increasing trend continues, or whether we, for instance,
have observed a portion of a slow oscillation.

Finally, one should remember the fact that the choice of
time scale influences the pattern of failures. Using calendar
time, operating time, mileage or cumulative repair cost as
the time scale for a car will probably give quite different
patterns of failures.

The most widely used model for repairable systems is the
nonhomogeneous Poisson process (NHPP). Not only is this
a flexible and mathematically tractable model, but it can
also be given a theoretical justification in many applications
(‘minimal repair’). For a description of other models we
refer to Ascher and Feingold'.

In this paper, we restrict attention to NHPP models and
study various properties of mainly three different trend tests.
Among these are the Laplace test and the Military Hand-
book test which are believed to be the most popular trend
tests. These are tests constructed for the alternative hypoth-
eses of monotone trend (i.e. either decreasing or increasing
trend). In order to be able to detect other kinds of trend, e.g.
bathtub-shaped trend, we suggest in addition a new trend
test based on the total time on test (TTT) plot for NHPPs?,
using the Anderson—Darling statistic®. Closely related to
this test is a test based on the Cramér—von Mises statistic*®,
which will also be briefly considered. In fact, this was our
original choice, while the successful use of the Anderson—
Darling statistic came up as a suggestion from a referee.
These tests should, by their construction, be able to detect
a variety of departures from the ‘no trend’ situation. Neces-
sarily, such a good ‘overall’ property should imply less
power than the Laplace and Military Handbook tests when
used against monotonic alternatives. A simulation study has
been performed in order to figure out how much one loses in
these cases by using the new test. On the other hand, the
simulation study is also able to show how much better the
new test is in the bathtub case.

An earlier power study, considering various tests for trend
in NHPPs, has been conducted by Bain et al.b. They studied
the power properties of a number of tests, including the
Laplace and the Military Handbook test, against the one-
sided hypothesis of an increasing intensity function. They
conclude that the Laplace test and the Military Handbook
test are the best tests in their study. Cohen and Sackrowitz’
gave a theoretical explanation of these findings and show
that the Laplace test and the Military Handbook test have
desirable properties against monotonic alternatives. None of
the other tests considered in Bain et al.® has been included in
our simulation study.

If more than one process is observed, we might want to
perform a simultaneous trend test using all the processes
together. We discuss generalizations of the Laplace test
and the Military Handbook test to the case of more than
one process. Properties of the standard generalizations of
the tests are compared by simulation to the properties of

an alternative generalization based on a total time on test
concept. A comparison with the Anderson—Darling-based
test is also presented.

It should be stressed that within the NHPP framework of
the present study, no trend will cotrespond to an assumption
of homogeneous Poisson process (HPP) of the failure pro-
cess. In practice, however, no trend may instead mean that
failures follow a renewal process. Well known tests for the
null hypothesis of a renewal process are' the Mann and the
Lewis—Robinson tests. These tests are not included in this
paper, however. In fact, when attention is restricted to
NHPP models and the null hypothesis of HPP, these
tests are outperformed by the tests specially constructed
for NHPP models. For a comparison of the Mann test and
the Lewis—Robinson test with the Laplace test and the
Military Handbook test, we refer to Lindqvist et al.®. A
major message in that paper is that the use of tests like the
Laplace test and the Military Handbook test in non-NHPP
situations may be strongly misleading and give invalid
conclusions.

2 IDENTIFICATION OF TREND
2.1 The nonhomogeneous Poisson Process (NHPP)

We refer again to Fig. 1. Let N(z) be the number of events
(failures) occurring in the time interval [0,¢]. The counting
process {N(t),t = 0} is called a nonhomogeneous Poisson
process (NHPP) with intensity function \(t) if (1) N(0) =0,
(2) the number of events (failures) in disjoint time
intervals are stochastically independent, (3) P(N(r + Af) —
N(@)=1)=N1)At + o(At) as Ar— 0, and (4) P(N(t + Ar) —
N(t) = 2) = o(Ar) as At — 0. (The last assumption assures
that two or more events cannot take place simultaneously.)

It is well known that the intensity function A(z) coincides
with the ROCOF (Rate of Occurrence of Failures) asso-
ciated with the repairable system'.

Further, letting the cumulative intensity be given by

Aty = J Au)du,

the number of events in an interval [1,f + v], i.e. N(t + v) —
N(1), has a Poisson distribution with mean A(r + v) — A(2).

Popular parameterizations of A(#) in applications to
repairable systems are the power law intensity

AND)=af® ', «,>0, 120
and the log-linear intensity,
AM)=e* P _w<qB<c, t=0

The NHPP with constant intensity A(f) = X is called a
homogeneous Poisson process (HPP). The HPP is a process
with no trend, while the NHPP permits the modeling of
trend via the intensity function A\(z).
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Fig. 1. Arrival times, 7,, and inter-arrival times, X;.

2.2 The repairable system model

In the NHPP framework, the object is to decide whether a
HPP or NHPP is the most relevant model. Both graphical
and statistical methods are at hand. In this paper, we shall
mainly pay attention to statistical methods, but some gra-
phical methods will be considered first.

We shall assume that m = 1 independent systems, mod-
eled by independent NHPPs with a common intensity func-
tion A(¢), are observed. The ith system is observed in the
time interval (a;b;] with n; failures occurring at times T,
j = 1,2,...,",‘.

Note that the endpoints of the observation intervals (a;b;]
may have different interpretations, according to the censoring
schemes that are used. Two common censoring schemes are
time truncation and failure truncation, defined in the following.

For time truncation the system is observed during a pre-
specified (operation) time. The observed number of failures
is thus a random variable.

For failure truncation the system is observed until a pre-
specified number of failures has occurred. The length of the
observation interval is now random.

Censoring strategies are important because data obtained
by different censoring schemes are stochastically different.
Hence, data must be treated differently depending on which
censoring scheme is actually used.

2.3 Nelson-Aalen plot

A nonparametric’ estimate of the cumulative intensity
function A(r) = I o Mu)du is given by

A=Y

Tijst

Y(Ty)

where Y(T;) is the number of systems which are operating
immediately before time T; and A(f) =0 for 1 < min;T;;.
This estimator is studied, for example, in Andersen et al. ~.

The Nelson—Aalen plot is simply the plot of A(r) versus 1,
essentially a scatterplot of the points (z;;, A(t,-j»)). If no trend is
present, i.e. A(?) is proportional to ¢, then the plot will tend to
be nearly a straight line. Deviation from the straight line
indicates some kind of trend.

If only one system is observed (m = 1), the Nelson—
Aalen plot is simply a plot of cumulative number of failures
versus operating time, which is the common way of plotting
failure data from single repairable systems.

Note that the Nelson—Aalen plot may be misleading if all
the a; are greater than O, or more generally if there are time
intervals inside the interesting time domain with no pro-
cesses under observation.

2.4 TTT plot

The TTT (Total Time on Test) plot is most well known as a
graphical technique for data from nonrepairable systems'®.
A TTT plot for repairable systems data has been introduced
by Barlow and Davis?, based on the NHPP model. As above,
assume that m independent NHPPs with common intensity
function A(r) are observed, and assume that all observation
intervals (a;b;] are contained in some time interval (0,5]. If
n; failures occurred in (a;, b;], let N =E/_ n;. Let S; denote
the kth arrival time in the superposed process, i.e. Sy is an

1.0 1.0

1.0

FPCORAA .
e®® .

0.0 1.0 0.0

1.0 0.0 1.0

Fig. 2. Typical shape of TTT plot from NHPPs with decreasing, increasing and bathtub-shaped intensity function.
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arrival time in one of the processesand 0 < S, =S, = .. =
Sy = S. Let p(u) denote the number of processes under
observation at time u and let 7(f) = [op(u)du denote the
total time on test from time O to time 7.

The (scaled) TTT plot for NHPPs is a plot of the scaled
total time on test statistic

Sk
T(Sk) J() p(u)du
) [ (N
J()p(u)du

versus scaled failure number k/N, k=1, ..., N. If p(u) = m,
then the scaled TTT plot is a scaled Nelson—Aalen plot
with the axes interchanged. ‘No trend’ corresponds to a
TTT plot located near the main diagonal. Various possible
shapes of the TTT plot may give indications of the type of
trend. Typical shapes of plots from NHPPs with decreasing,
increasing and bathtub-shaped intensity functions are illus-
trated in Fig. 2.

The points (k/N, T(S)/T(S)) in the TTT plot are often
connected with straight lines.

2.5 Laplace’s test

Laplace’s test for a single system is a test of the null hypoth-
esis Hy: HPP, versus the alternative hypothesis H,: NHPP
with monotonic intensity function.

If a process is observed in the time interval (a,b] and

{ n if the process is time truncated
A=<-

n— 1 if the process is failure truncated

then the test statistic

A lA
B Ej:lTj_ En(b—f—a)

N éfz(b ~ay

is asymptotically standard normally distributed under the
null hypothesis, i.e. when the underlying process is a HPP.
The approximation with the normal distribution turns out to
be very good, a rule of thumb says that n = 3 suffices. The
test is optimal for the null hypothesis (HPP) when the alter-
native is a NHPP with log-linear intensity function, if the
exact null distribution of L is used®'".

The intuitive idea behind this test is to compare the mean
value of the failure times with the midpoint of the observa-
tion interval. Under the null hypothesis of a HPP, T'.....T;
are the order statistic from a uniform distribution on (a,b],
and it follows that Z;I:I T; has expectation A(b + a)/2 and
variance A(b — a)*/12. This explains why eqn (2) is asymp-
totically standard normally distributed under the null
hypothesis. If there is a monotone trend in the failure data,
the mean value of the failure times will tend to deviate from
the midpoint. The value of L indicates the direction of the
trend. If L < O we have a decreasing trend and if L > 0 we
have an increasing trend.

(2)

The generalization of the Laplace test to more than one
process can be done in several ways. A straightforward
generalization of eqn (2) if we have observations from m
independent processes is

A m lA
DD VARRY TR M Filbi +a;)

1
\/71_2):?1: Iﬁi(bi - ai)2

The test based on this statistic is optimal for the null
hypothesis of HPP, possibly with different intensities in
each HPP, against the alternative of NHPPs with intensity
A7) =e* " where 8 is common for all processes, while «;
is specific for each process''. We call this test the combined
Laplace test.

Le= (3)

2.5.1 TTT-based generalization of the Laplace test

A different way of generalizing the Laplace test to more
than one process which we have not seen in the literature
is to use the TTT-statistic [eqn (1)]. As in Section 2.4, we
assume that we have observations from m independent
NHPPs with identical intensity function A(f), and that
each process has been observed in a subset of the time
interval (0,S]. The superposed process has intensity function
¥(1) = N#)p(1), and under the null-hypothesis of no trend,
i.e. A(t) = A, it has cumulative intensity function I'(r) = 7(¢).
It follows from results on stochastic time changes 9, that the
time transformed process I'(S)),...I'(Sy) is a HPP with
intensity one. Consequently, the process 7(S)),...,7(Sy) is
a HPP with intensity \.

Thus, 'Z, if the process is failure truncated, 7(S;),
..»7(Sn_p) will have the same distribution as the order sta-
tistic corresponding to N — | independent random variables
uniformly distributed on the interval (0,7(Sy)]. Similarly, if
the process is time truncated, then conditional on the
number of failures, N, 7(S)),...,7(Sy) will have the same
distribution as the order statistic corresponding to N inde-
pendent random variables uniformly distributed on the
interval (0,7(S)]. Notice that in the case of failure truncated
processes 7(S) = Z(Sy). Define N as

A { N if the processes are time truncated
N =

N — 1 if the processes are failure truncated

We conclude that (conditional on the total number
of failures, AN, in the case of time truncation)
(T(SHHT(S), k=1, ...,N), is distributed as the order statistic
of N uniform (0,1) random variables. Hence,

¢ T(S 1.
N (Sx) &

k=1 -
L s T2 @

1.
v/ =N
12

is asymptotically standard normally distributed under the
null hypothesis that all processes are HPPs with identical
intensities. We will call this the TTT-based Laplace test.
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Notice that eqns (2)-(4) are identical in the case of only
one process.

Recall that this is a test of a more restrictive null hypoth-
esis than the combined Laplace test, which tests the null
hypothesis of HPPs with possibly different intensities,
while the TTT-based Laplace test tests the null hypothesis
of HPPs with equal intensities. Hence, if the combined
Laplace test rejects the null hypothesis we can conclude
that we have a trend in our data, while if the TTT-based
Laplace test rejects the null hypothesis we can only con-
clude that we do not have data from HPPs with identical
intensities. Consequently, the TTT-based tests should be
used only if we have reasons to believe that the systems
are fairly homogeneous. These matters are further discussed
in the simulation study.

2.6 Military Handbook test

This is another test constructed for the null hypothesis of a
HPP versus the alternative of NHPP with monotone trend.
The test statistic for a single system observed in the time
interval (a,b] is

M:ZZ]n(b_a> )

which, is (exactly) chi-square distributed with 27 degrees of
freedom under the null hypothesis'>.

The one sided Military Handbook test, which tests the
null hypothesis of a HPP against the hypothesis of an
increasing trend, is the optimal test when the alternative is
a NHPP with increasing power law intensity function®.

This test is based on the observation that if U is uniformly
distributed on (0,1], then — 2In(U) will be chi-square dis-
tributed with two degrees of freedom. Thus, since T4,...,T;
under the null hypothesis are distributed as the order statistic
from a uniform distribution on (a,b], this explains the null
distribution of eqn (5). If we have a monotonically increasing
trend, the test statistic M will become small compared to the null
distribution, because then the failure times T,,...,T,; will tend to
be larger than the order statistics from the uniform distribution
on (a,b]. Similarly, if we have a decreasing trend, M will be large
compared to the null distribution.

The straightforward generalization of eqn (5) to more
than one process is

MC=2iiln (;—_a—) (©6)

i=lj=1 j — 4

which is (exactly) chi-square distributed with 2q degrees of
freedom, where g =L7. 4;, under the null hypothesis of
HPPs (possibly with different intensities). We call this
the combined Military Handbook test.

Under the null hypothesis of independent HPPs with
identical intensities, the test statistic

Al T(S)
M,=2 | 7
r ,Z—l ! (T(Sk)> @

1s chi-square distributed with 2N degrees of freedom, and
we call this the TTT-based Military Handbook test.

3 A NEW TEST BASED ON THE TTT PLOT

The TTT plot was presented in Section 2 as an appropriate
graphical method for visualizing trend in data from NHPPs.
Moreover, we suggested TTT-based versions of the Laplace
and Military Handbook tests. In this section, we shall
demonstrate how a new statistical trend test based on the
TTT plot can be obtained. As for the TTT-based versions of
the Laplace test and the Military Handbook test, in the case
of more than one process this is a test of the null hypothesis
of identical HPPs.

One interesting feature of the test we shall derive is that it
can be used to detect bathtub-shaped or other non-
monotonic intensity functions.

Recall from Section 2.4 that in the ‘no trend’ case, the
TTT plot tends to lie near the diagonal. Departures from this
case, for example when the underlying intensity function is
monotonically increasing, decreasing or bathtub shaped,
will tend to increase the area between the TTT plot and
the diagonal. This suggests that a test statistic for the null
hypothesis of a HPP could be based on some function
related to this area.

As in Section 2.5.1, we assume that we have N observa-
tions §,....Sy from m = 1 processes observed on [0,S],
where S; is the ith arrival time in the superposed process
and Sy = § (see Section 2.4).

Recall the derivation of the TTT-based Laplace test
where we show that (7(S)/T(S),k=1, ...,N), has the
same distribution as the order statistic based on N i.i.d. uni-
form (0,1) variables. We conclude that the empirical distri-
bution function of T(S)/T(S),k=1,...,N, which is

k=1 TS TE)

FVO==—72=" TG)

approaches the cumulative distribution function of the uni-
form (0,1) distribution as N increases. Next define the
process

Cy(v) = VN(Fy®) —v), 0=v=1

By its definition, Cy defines a measure of the distance
between the TTT plot and the diagonal. Andersen et al.’
suggest the signed area between the TTT plot and the diag-
onal, fol Cy(v)dv, as a measure of departure from the HPP
assumption. They arrive at an easily evaluated asymptoti-
cally normal test statistic, but since they are using the
signed area their test has the serious drawback of having
very low power against non-monotonic trends that places
area on both sides of the diagonal in the TTT plot, e.g.
bathtub-shaped trend. Another test proposed by Andersen
et al.” is to use the Kolmogorov statistic max,g, 1)|Cn{(v)| as
a test statistic. This test should be able to detect both mono-
tonic and non-monotonic trend, but the convergence of the
test statistic to its asymptotic distribution seems to be very
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slow. In our simulation studies this test achieved a far too
low actual level for the moderate sample sizes considered
(even with as many as 500 failures it did only achieve an
actual level of about 4% when the nominal level was 5%).
Thus, critical values of this test should be computed by
other means than the asymptotic distribution. This test is
not further discussed in the presentation of the simulation
study.

In order to get a test statistic with fairly good power both
against monotonic and non-monotonic trends, inspired by
Aarset'®, we shall first propose the test statistic

1
Wy = Jocf,(u)dv (8)

which (except for the squaring) can be viewed as a measure
of the (unsigned) area between the TTT plot and the diag-
onal. Since F(v) = v is the cumulative distribution function
of the uniform (0,1) distribution and F(v) is the empirical
distribution function for data which under the null hypoth-
esis are uniform (0,1) distributed, eqn (8) is a Cramér—von
Mises statistic*®, and we call the test based on this statistic
the Cramér—von Mises test for trend. A possible improve-
ment of the Cramér—von Mises test is the Anderson—
Darling test® given by the test statistic

1
=], Cho) gy ©)
We shall call the test based on this statistic the Anderson—
Darling test for trend. The difference between the two
statistics (8) and (9) is the weight function 1/v(1 —v) in
the latter, which has the effect of giving greater importance
to observations in the tails, counteracting the fact that
Fy(v) — v approaches zero in each tail. The asymptotic dis-
tributions of eqn (8) and (9) were derived by Anderson and
Darling *. A nice practical review of these and related tests,
containing percentage points for the asymptotic distribu-
tions, was given by Stephens'>. An explicit expression for
the limiting cumulative distribution function (9) was given
by Anderson and Darling'®

‘/Z (= TG+ )+ 1)

PA=<a)= .
j=0 J:

X e M4+ )7 1(8a)

X J all8(w! + D)l = (4 + ' 7w 1(8a) g,
4]

This is a good approximation of the exact distribution even
for very small samples. Using the asymptotic distribution,
on a 5% level the null hypothesis of no trend is rejected if
= Agos = 2.492.
For practical implementations, straightforward calcula-
tions from eqn (8) and (9) lead to the test statistics,

N . . 2
TS 2i—1 1
Wy = E - +—=
N f:.[‘T(S) 2N] 12N

for the Cramér—von Mises test for trend and

‘T(Sl)
Ay=— = 2i — )(In
[;( Min( )
+1In (1_&,’2))1_ (10)

T(S)

for the Anderson—Darling test for trend.

In our simulation study, the Anderson-Darling trend
test essentially seems to behave uniformly better than the
Cramér—von Mises trend test, and thus with a few excep-
tions only, the Anderson—Darling trend test is the only one
mentioned in the simulation study. More specifically,
against monotonic trend there are only minor differences
in power between the two tests, probably explained by a
bit too low actual level for the Cramér-von Mises trend
test on moderate sample sizes, while against bathtub-type
trend the Anderson—Darling trend test represents a consid-
erable improvement over the Cramér—von Mises trend test,
as we would expect since the former puts more weight to
observations near the endpoints.

The Anderson—Darling trend test should be used in close
connection with visual inspection of the TTT plot or a
Nelson~Aalen plot. Situations where the null hypothesis
is rejected but the intensity function is neither increasing,
decreasing nor bathtub shaped can be thought of; for
instance cyclic trend or other non-monotonic trends.
Although it may be difficult to classify the type of trend
in certain situations, at least we know after rejection that
if the NHPP assumption is valid, and only one or identically
distributed processes are observed there is some kind of
departure from the ‘no trend’ situation. The TTT plot or
the Nelson—Aalen plot then gives a qualitative description
of this departure. If more than one process is observed,
individual plots for each process should be made as well.
These plots can both visualize the individual trend in each
process, and possibly help to distinguish situations with real
trend from situations with heterogeneous HPPs.

4 SIMULATION STUDY

In order to compare the properties of the new tests to the
commonly used Laplace test and the Military Handbook
test, a simulation study has been carried out. The simula-
tion code is written in C, and the C-function random() is
used as random number generator, with the generation of
seeds connected to the system clock as well as iteration
number.

4.1 Single systems

We consider first the case m = | when one single system is
observed. In this case, the TTT-based versions of the
Laplace and Military Handbook test are not considered as
they are exactly equal to the original tests. Thus, we con-
sider the ordinary Laplace test, eqn (2), the ordinary
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Fig. 3. Simulations of a HPP with intensity 1. Failure truncation with the number of failures ranging from four to 90, and time truncation
with the expected number of failures ranging from four to 90. Twenty thousand replications for each number of failures.

Military Handbook test, eqn (5), and the Anderson—Darling
trend test, eqn (10).

For each simulated process we consider the time from
t =0. When simulating a failure truncated process, the pro-
cess is run until the prespecified number of failures has
occurred. For time truncated processes, the truncation time
is determined so that the expected number of failures equals
the prespecified ‘number of failures’ (the actual number of
failures will vary, and now and then it will even happen that
no failures has occurred before the truncation time. This
happened very rarely though, and at these few occasions
we simply simulated a new process). For each run, a
choice is made for the A(7)-function.

For each given choice of truncation mechanism, number
of failures and intensity function, the aim is to estimate the
probability of rejection of the null hypothesis of ‘no trend’
(i.e. HPP) for each of the three tests. This is accomplished
by simulating (usually) 10,000 processes with the same
setup, and recording the relative number of rejections
(absolute number divided by 10,000) for each test.

If the simulated process is a HPP, the estimated rejection
probability is called the actual level, which we interpret as
the true probability of incorrect rejection. This may be dif-
ferent from the nominal level, which is the desired level
which is used for determining critical values. The difference
between actual and nominal level results from the fact that
in most cases critical values are computed from asymptotic
approximations rather than the exact distributions. The
nominal significance level has been set to 5% throughout
the study.

If the simulated process is not a HPP, there is a kind of
trend. In this case, the estimated rejection probability is
called the power of the test. The power as a function of
the trend parameter is called the power function of the test.

The estimated rejection probabilities of course become
more accurate as the number of replications increase.

Indeed, if we let p denote the estimated rejection probabil-
ity, then the standard deviation is /p(1 — p)/n, which is
bounded above by 1/(2/n). Thus, if n = 10,000, the stan-
dard deviation is no larger than 0.005.

The following abbreviations are used in the graphs:
Laplace—The Laplace test, eqn (2), Mil-hbk—The Mili-
tary Handbook test, eqn (5), A—D—The Anderson—Darling
trend test, eqn (10).

Note that the displayed curves, except for Fig. 3, are
spline interpolations connecting the observation points.

4.1.1 Level properties

Fig. 3 displays the actual level of the Anderson-Darling
trend test for a varying number of failures and data
simulated from both a failure truncated and time truncated
HPP.

The graphs show that the Anderson—-Darling trend test
achieves the correct actual level of 5% with satisfying accu-
racy even for very small sample sizes, and for both failure
and time truncated processes.

As regards the Laplace and the Military Handbook tests,
the latter keeps an exact level for HPPs, while the former is
approximately exact even for as low as three failures.

4.1.2 Power properties

4.1.2.1 Log-linear intensity function. In this case \(r) =
e*™ and A(r)=e%(” — 1)/8. Thus, if 8 < 0 we have a
finite limit lim,_.A(f) =e%/|3|. This means that with
probability 1, only a finite number of failures will occur
during infinite time. In order to avoid difficulties arising
from this, we have simulated only the increasing case,
B8 >0.

Figure 4 presents estimated power functions with data
simulated from failure and time truncated NHPPs, respec-
tively, with log-linear intensity function and 15 (expected)
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failures. We observe that the Laplace test is the most power-
ful test, as expected, since it is the optimal test in this situa-
tion. The Anderson-Darling trend test has larger power than
the Military Handbook and is only slightly less powerful
than the Laplace test. We also observe that the power func-
tions are quite similar in the failure truncated and time
truncated cases, with slightly higher power for time
truncated processes.

When 35 failures are simulated, see Fig. 5, the same
picture as in Fig. 4 is seen, but the differences between
the tests are smaller, and the power functions are of course
steeper.

4.1.2.2 Power law intensity function. When data are
simulated from a NHPP with power law intensity
function, N#) = ofBt®', both data with decreasing
(0<B<1) and increasing (8 > 1) trend can be
simulated. Figure 6 displays graphs of estimated power
functions with data simulated from NHPPs with power
law intensity function and 15 failures (expected number
for time truncated process). We observe that the Military
Handbook test is the test with largest power, as expected,
since this test is the optimal test in this case. The Laplace
test is a bit stronger than the Anderson—Darling trend test
against increasing trend, while the Anderson—Darling trend
test is stronger than the Laplace test against decreasing
trend. Again there are no big differences between the
failure and time truncated cases.

When-" 35 failures are simulated, see Fig. 7, the same
effects are observed, the only difference being that the
power functions are steeper and the Anderson—Darling
trend test and Laplace test are almost identical against
increasing trend.

4.1.2.3 Bathtub-shaped intensity function. A simple
example of a bathtub-shaped intensity function is given in
Fig. 8. The intensity function has been divided into three
phases, I, II and III, which may be identified as the ‘infant
illness’ phase, ‘useful life’ phase and ‘wear out’ phase,
respectively.

Data have been simulated from NHPPs with 12 different
bathtub-shaped intensity functions, described in Table 1 by
specifying the expected number of failures in each phase
and the slope of the intensity function in phase I and phase
ITI. Note that the expected number of failures in each
phase are easily found to be, in phase I, A(r) =
ti(b+ 1)/2, in phase II, A(t;) — A(t)) = t, — t; and in
phase III, A(7) — A(f) = (7 — t)(c + 1)/2.

Both time and failure truncated processes are simulated.
The time truncated processes are truncated at time 7, while
the number of failures simulated in the failure truncated
process equals the sum of expected number of failures in
each phase. If the last simulated arrival time(s) are larger
than 7 in the case of a failure truncated process, the intensity
function in phase III is extended beyond 7. Results of the
simulations are given in Tables 2 and 3. For the sake of
illustration of the difference between the Cramér—von

Mises trend test and the Anderson—Darling trend test, the
Cramér—von Mises trend test has also been included in these
simulations.

The Anderson—Darling trend test is clearly the best test as
it is the most powerful test in all of these situations. The
Cramér-von Mises trend test is generally the second most
powerful test, but the Anderson—Darling trend test is defi-
nitely better. The other tests are quite powerful in some of
the considered situations, but have very low power in other
situations, making them unsuitable as tests against bathtub
trend.

4.2 Several processes

Now we proceed to consider the case m > 1. There is of
course a huge number of situations to consider, with varying
numbers of observed processes, various censoring schemes,
different kinds of heterogeneities, etc. This is by no means a
thorough study of the m > 1 case, only a few situations are
considered to get a first feeling on how the various tests
behave in this case.

For monotonic trends we have simulated data with two
different designs. With the first design we have simulated
data from m = 5 independent processes which are started at
time ¢ = O, but are observed over different, but partially
overlapping, time intervals. The observation interval for
each process has been chosen such that the expected number
of failures in each interval equals five, but with different
starting points for each interval. Hence, the expected total
number of failures is 25. A symbolic illustration is given in
Fig. 9. The position and length of each interval on the time
axis will of course depend on intensities in each process.

The second design used to simulate data with monotonic
trend also simulate data from m = 5 independent processes,
but this time we have observed all the processes from time
t =0. In the first process we let the length of the observation
interval vary, corresponding to a varying expected number
of failures in this interval. In the other four processes the
length of the observation intervals has been chosen such that
the expected number of failures in each process equals three.
A symbolic illustration for the case when the expected
number of failures in the first interval, nl, equals 12 is
given in Fig. 10.

4.2.1 No heterogeneities

First we consider the case where each process is simulated
from NHPPs with identical intensity functions A(z) for t = 0.
In the first example we have simulated data using the first
design mentioned above, i.e. the ith process is observed in
an interval [a,b;] where a; and b; are chosen such that the
expected number of failures before and in the ith interval
is as indicated in Fig. 9. Data are simulated from both a
log-linear and a power law intensity function, and the
results are shown in Fig. 11. The abbreviations used now
are, Laplace—The combined Laplace test, eqn (3),
Laplace-TTT—The TTT-based Laplace test, eqn (4),
Mil-hbk—The combined Military Handbook test, eqn
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(6), Mil-hbk-TTT—The TTT-based Military Handbook
test, eqn (7), A—-D—The Anderson-Darling trend test,
eqn (10).

We realize that the TTT-based tests (the Anderson—
Darling trend test, TTT-based Laplace test and TTT-based
Military Handbook test), are far more powerful than the
combined Laplace test and Military Handbook test. The
relationships between the TTT-based tests in the power
law case are the same as the relationships between the
Anderson-Darling trend test, Laplace test and Military
Handbook test shown in Figs 6 and 7 in the one process
case, and for the log-linear case the relationship is the same
as the relationship seen in Figs 4 and 5. Also notice that, in
contradiction to the picture on Figs 6 and 7, the Laplace test
has more power against increasing power law trend than the
Military Handbook test in the studied case with five pro-
cesses. Additional simulations indicate that this seems to
happen when data are simulated from more than about
three processes.

One possible explanation of the success of the TTT-based
versions of the Laplace test and the Military Handbook test
in the above example is that while the TTT-based tests
superpose all the five processes to one process with a mono-
tonic trend, the combined Laplace test and combined Mili-
tary Handbook test search for trend within each single
system (which they have to do since they allow for hetero-
geneities between the processes). It might also be argued
that the design used is a bit artificial. The alternative design,
Fig. 10, is probably closer to a typical practical situation,
and if we are varying the expected number of failures in the
first process we can get a picture of how the TTT-based tests
behave compared to the other tests as the first process is
more or less dominating. We have chosen two power-law
intensities, A(t) = =1 with respectively 8 = 1.5 and
8=0.75, i.e. respectively, increasing and decreasing
trend. We let the expected number of failures in the first
process, rnl(see Fig. 10), vary from three to 120, and rejec-
tion power as a function of this expected number is dis-
played in Fig. 12. We see that for nl = 3, i.e. when all
the five processes have been observed over the same inter-
val, the TTT-based and combined versions of the Laplace
test and the Military Handbook test coincide [which is easily
seen from eqn (3) and (4), and (6) and (7)]. Otherwise, the
TTT-based tests are stronger. Even when the expected
number of failures in the first process is much larger than
the total expected number of failures in the four other pro-
cesses (12), the TTT-based tests are much stronger. The
reason why the TTT-based tests are far better than the
other tests is probably that these tests, making the stronger
assumption of equal intensities, are using the information in
the four processes observed over a short time interval more
efficiently than the combined tests. As the combined tests
have to allow for heterogeneities in the various processes
they cannot extract the same amount of information from
the four processes observed over a short time as the TTT-
based test which superposes all observations into one
process.

Data from several NHPPs with the same bathtub-shaped
intensity functions are simulated as well. Five processes are
simulated and the 12 intensity functions described in Table
1 are used. However, now the processes are not observed
over the entire time interval [0, 7]. One process is observed
only in phase I (see Fig. 8), one observed only in phase II,
one only in phase III, one observed in phases I and II, and
the last process is observed in phases II and III. The results
are presented in Table 4. Once again, the TTT-based tests
are more powerful than the combined Laplace and Military
Handbook tests, but the TTT-based Laplace test is not very
much better than the combined Laplace test. The Anderson—
Darling trend test is the most powerful test in all cases,
while the TTT-based Military Handbook test is generally
the second best test.

4.2.2 Heterogencities

The results from the previous subsection seem to indicate
that the combined Laplace and Military Handbook tests are
completely outperformed by the TTT-based tests, but we
should keep in mind that the latter tests are constructed
for the more restrictive null hypothesis of HPPs with iden-
tical intensity functions, while the combined Laplace test
and combined Military Handbook test allow heterogeneities
in the HPPs under the null hypothesis of no trend. To study
the effect of such heterogeneities, data are simulated from
five processes with the observation interval for each process
chosen according to the design in Fig. 9. NHPPs with inten-
sity functions a,-BrB ~! and e* ™ are simulated, where the
a8 are varying from process to process, while the 8s are
common for all processes. The results and choice of para-
meter values are given in Fig. 13. Notice that with our
choices of parameter values, the relative heterogeneities in
the log-linear intensity functions are greater than the relative
heterogeneities in the power law intensity functions (i.e. the
range of intensity values in the no trend case is about two
times greater with the choice of parameter values done in
the log-linear case compared to the power law case).

The picture in Fig. 13 clearly displays the problem with
the TTT-based tests; they are not constructed to allow het-
erogeneous intensity functions. In the power law case the
tests achieve an actual level exceeding 0.1. In the log-linear
case the TTT-based tests achieve a too low level. This dif-
ference in level behavior between the two cases is of course
only explained by the difference in heterogeneities. The
combined Laplace and Military Handbook tests behave
reasonably well. The difference in level behavior of the
TTT-based tests seen in the two cases, with less severe
level properties in the most heterogeneous case, is some-
what unexpected. To investigate this further, some
additional simulations of HPPs with unequal intensity
functions were performed. The observation intervals indi-
cated in Fig. 9 are still used. Hence, the expected number of
failures in each simulation is 25, and the results are given in
Table 5.

We see that the level behavior of the TTT-based tests are
somewhat unpredictable, and often they achieve a far too
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Fig. 4. Simulations of a NHPP with intensity function \(¢) = e? where B8 = beta = {0,0.01,0.03,...0.40,0.45...,1,1.2,...,2.0}. Ten thousand
replications for each beta-value. Failure truncation with 15 failures and time truncation with expected number of failures in each simulation
equal to 15.

high actual level. Thus, if we suspect considerable hetero-
geneities in data from several processes, these tests should
not be used. But we should also notice that in the case of only
moderate heterogeneities, their level properties are tolerable.
In fact, in these situations it could be favorable to use the TTT-
based tests due to their far better power properties. In such
cases the TTT-based Military Handbook test and Anderson-
Darling trend test seem to have the best overall properties.

5 CASE STUDY

This is a simple example to demonstrate the use of the
trend tests. A dataset presented by Barlow and Davis®
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is used. The data are failure truncated failure time data
for 22 tractor engines. The pattern of failure times and
a TTT plot for these failure times are displayed in
Fig. 14.

The TTT plot clearly indicates an increasing trend in
the data. Results of the statistical trend tests are pre-
sented in Table 6. All the trend tests reject the null
hypothesis on a 5% level, hence we may safely conclude
that there is an increasing failure trend in the tractor
data. We noted a fairly large relative difference between
the p-values of the TTT-based tests and the other tests,
which could indicate a possible heterogeneity between
tractors. However, even under possible heterogeneities
among the tractors the HPP assumption is rejected since
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Fig. 5. Simulations of a NHPP with intensity function (1) = e? where 8 = beta = {0,0.01,0.03,....0.50}. Ten thousand replications for
each beta-value. Failure truncation with 35 failures and time truncation with expected number of failures in each simulation 35.
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the combined Laplace test and the combined Military
Handbook test reject the null hypothesis. Moreover,
according to investigations made by Elvebakk'’, there
seem to be no indications of heterogeneity in the tractor
engine data.

With a maximal number of six observed failures for the
single tractors, it is obviously difficult to analyze them indi-
vidually. In fact, the null hypothesis of no trend would be
rejected only for tractor number 14. But assuming a com-

mon trend for all the 22 tractor engines the conclusion is a
significantly increasing trend.

6 CONCLUSIONS
6.1 Description of each test

The properties of each test are summarized below.

6.1.1 The Laplace test

The Laplace test is for single processes the most powerful
test against NHPP with log-linear intensity function. In our
study it was the least powerful test against NHPP with
decreasing power law intensity and it is only slightly more
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Fig. 7. Simulations of a NHPP(r*~!), where 8 = beta = {0.30,0.35....,2.5}. Ten thousand replications for each beta-value. Failure truncation
with 35 failures and time truncation with expected number of failures in each simulation 35.
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Fig. 8. Example of bathtub-shaped intensity function.

powerful than the Anderson-Darling trend test against
increasing power law intensity. It has in general low
power against NHPPs with bathtub-shaped intensity
functions.

If more than one process is observed, the combined
Laplace test is not particularly powerful against bathtub-
shaped and decreasing power law intensity functions, but
it seems to be more powerful than the combined Military
Handbook test both against increasing power law and log-
linear intensity functions if more than three processes are
observed.

6.1.2 The TTT-based Laplace test

The TTT-based Laplace test generally has the same proper-
ties compared to the other TTT-based tests as the original
test has in the one process case, but it has poor properties
against bathtub-shaped intensity functions.

6.1.3 The Military Handbook test

The Military Handbook test is for single processes the most
powerful test against NHPPs with power law intensity func-
tion. It is the least powerful test against NHPPs with log-
linear intensity functions, and has generally low power
against bathtub-shaped trend. If more than one process is
observed it is generally the least powerful test against

I '
t —

increasing trend. It is better than the Laplace test against
decreasing and bathtub-shaped trend.

6.1.4 The TTT-based Military Handbook test

The TTT-based Military Handbook test has the same prop-
erties compared to the other TTT-based tests as the original
test has in the one process case. It has good ‘overall’
properties.

6.1.5 The Anderson—Darling trend test

The Anderson—Darling trend test is by far the most power-
ful test against NHPPs with bathtub-shaped intensity
functions. Against monotonic trends the Laplace test is
slightly better against NHPP with increasing power law
intensity functions, in all other situations that we considered
the Anderson—Darling trend test is the second most power-
ful test against monotonic trend.

6.2 Final comments

It is obvious that no test is superior to the other tests in all
situations. However, we feel that even for the single system
case the Anderson—Darling trend test might be recom-
mended as the best choice for general use. This is because
the differences in power between the Anderson-Darling test

4

8 9 10 11 12 13

Expected no. of failures.

Fig. 9. Picture of expected number of failures in the processes. In case of a HPP the picture will be equal on the time axis, otherwise
different.
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Fig. 10. Picture of expected number of failures in the processes. In this example the expected number of failures in the first process, nl,
equals 12. In case of a HPP the picture will be equal on the time axis, otherwise different.
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Fig. 11. Simulations of NHPPs with intensity function A(f) = #71 where 8 = beta = {0.25,0.30,...,3.5}, and from NHPPs with intensity
function N#) = e®, where 8 = beta =

= {0,0.01,0.03,...,0.40,045,...,1,1.2,...,2.0}. Ten thousand replications for each beta-value. Data
simulated from five processes using the simulation design in Fig. 9. Expected total number of failures is 25.
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Fig. 13. Simulations of a NHPP with intensity function Ny =ag®", where a; =05, a, =0.625, a3 =0.75, a; =0.875, as=1.0,

B =beta= {0.25,0.30,...,3.5}, and from a NHPP with intensity function MO =e* TP where o

— 1‘5, oy = — 09, a3 = — 05,

as= — 02, a5 =0, 8 =beta = {0,0.01,0.03,...,0.40,0.45,...,1,1.2,...,2.0}. Ten thousand replications for each beta-value. Expected total
number of failures is 25.

and the respective optimal test against monotonic alterna-
tives, are small compared to the differences between them
against nonmonotonic trends.

If more than one process is observed we must decide
whether we want to test the null hypothesis of identical
HPPs or if we want to allow for heterogeneous HPPs
under the null hypothesis. In the former case, or with
minor deviations from the former case, the Anderson—
Darling trend test and the TTT-based Military Handbook
test have the best ‘all over’ properties. In the latter case,
the combined Laplace test or the combined Military Hand-
book test should be used. In fact, our simulations show that
the TTT-based tests (including the Anderson—Darling test)

may give misleading results in the presence of considerable
heterogeneities.

We conjecture that in the case of identical intensity func-
tions of the systems, the TTT-based tests are always at least
as powerful as the combined ones. Intuitively this is so since
by making stronger prior assumptions, one gets stronger
inference results (as long as the assumptions hold). We
have not found any situation which contradicts this conjec-
ture, but by calculations and simulations not included in this
paper we have found certain rather artificial situations where
the combined tests were only slightly weaker than the TTT-
based ones. This was in situations where the number p(¢) of
observed processes increased strongly with time.
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Fig. 14. Failure times and TTT plot for tractor data.
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Table 1. Description of 12 bathtub-shaped intensity functions
Slope Expected number of failures
Function Phase 1 Phase III Phase 1 Phase 11 Phase III
1 2 2 8 8 8
2 1 1 8 8 8
3 172 1/2 8 8 8
4 2 12 8 8 8
5 1 1 5 5 5
6 1 1 15 15 15
7 1 1 10 5 10
8 1 1 5 10 5
9 1 1 10 0 10
10 0 1 0 10 10
11 2 1 4 8 10
12 1 1 10 8 4
Table 2. Simulated power with bathtub-shaped intensity function number 1-12
Test Power
1 2 3 4 5 6 7 8 9 10 11 12
Laplace 0.25 0.22 0.17 0.24 0.16 0.26 0.20 0.17 0.14 0.49 0.27 0.36
Mil-hbk 0.36 0.27 0.19 0.44 0.17 0.48 0.26 0.21 0.14 0.32 0.18 0.45
C-vM 0.47 0.34 0.22 0.36 0.20 0.74 0.36 0.21 0.16 0.50 0.38 0.44
A-D 0.70 0.50 0.32 0.56 0.28 0.91 0.51 0.33 0.22 0.56 0.52 0.55
Ten thousand replications for each intensity function. Failure truncated processes.
Table 3. Simulated power with bathtub-shaped intensity function number 1-12
Test Power
1 2 3 4 5 6 7 8 9 10 1t 12
Laplace 0.13 0.11 0.09 0.15 0.10 0.12 0.11 0.10 0.08 0.53 0.25 0.29
Mil-hbk 0.31 0.22 0.16 0.42 0.14 0.43 0.21 0.16 0.10 0.33 0.14 0.47
C-vM 0.36 0.24 0.15 0.31 0.14 0.67 0.29 0.14 0.12 0.47 0.33 043
A-D 0.66 045 0.28 0.51 0.24 0.89 0.48 0.27 0.18 0.61 0.53 0.51
Ten thousand replications for each intensity function. Time truncated processed.
Table 4. Simulated power with bathtub-shaped intensity function number 1-12
Test Power
1 2 3 4 5 6 7 8 9 10 11 12
Laplace 0.10 0.08 0.07 0.09 0.07 0.09 0.08 0.07 0.04 0.44 0.25 0.27
Laplace-TTT 0.13 0.11 0.09 0.18 0.09 0.12 0.12 0.09 0.09 0.76 0.37 0.44
Mil-hbk 0.15 0.11 0.08 0.21 0.08 0.57 0.09 0.09 0.05 0.29 0.10 0.31
Mil-hbk-TTT 0.54 0.38 0.26 0.68 0.23 0.38 0.38 0.28 0.14 0.46 0.14 0.77
A-D 0.95 0.80 0.54 0.84 0.54 1.00 0.87 0.46 0.30 0.86 0.84 0.82

Ten thousand replications for each intensity function. Five processes observed.
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Table 5. Simulated actual level with various heterogeneous HPPs
Intensities
a 0.1 0.2 0.5 0.6 0.75 0.9
o) 0.25 0.4 0.625 0.7 0.75 0.9
o 0.5 0.6 0.75 0.8 0.9 0.9
oy 0.75 0.8 0.875 0.9 1 I
s I 1 1 1 | 1
Test Actual level
Laplace 0.049 0.051 0.050 0.050 0.050 0.048
Laplace-TTT  0.530 0.029 0.130 0.108 0.076 0.055
Mil-hbk 0.051 0.049 0.051 0.051 0.050 0.050
Mil-hbk-TTT  0.095 0.015 0.087 0.073 0.058 0.053
A-D 0.596 0.071 0.129 0.106 0.074 0.056
Five processes. Twenty thousand replications.
Table 6. Analysis of tractor data certain goodness of fit criteria based on stochastic processes.
— Ann. Math. Statist., 1952, 23, 193-212.
Test Test statistic P-value 4. Cramér, H., On the composition of elementary errors. Skand.
Combined Laplace 2.08 0.0372 5 M, 128 AL T A, Deutick
Laplace-TTT 503 0.0000 . loe?pziglsle;é] .. Wahrscheinlichkeitsrechnung, Deuticke,
gd‘;;f‘:gﬁ‘ﬁ,rhg"'hbk j‘;"g 8‘88(2)8 6. Bain, L. J., Engelhardt, M. and Wright, F. T. Tests for an
A_D 13'3 O'OOOO increasing trend in the intensity of a Poisson process: a power
. : study. J. Am. Statist. Assoc., 1985, 80, 419-422.
7. Cohen, A. and Sackrowitz, H. B. Evaluating tests for increas-
ing intensity of a Poisson process. Technometrics, 1993, 35,
446-448.
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