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A major aspect of analysis of failure data for repairable systems is the testing for a 
possible trend in interfailure times. This paper reviews some important and popular 
graphical methods and tests for the nonhomogeneous Poisson process model. In 
particular, the total time on test (TTT) plot is considered, and trend tests based on the 
TTT-statistic are motivated and derived. In particular, a test based on the Anderson- 
Darling statistic is suggested. The tests are evaluated and compared in a simulation 
study, both with respect to the achievement of correct significance level and rejection 
power. The considered alternatives to 'no trend' are the log-linear, power law and a 
class of bathtub-shaped intensity functions. The simulation study involves single 
systems, as well as the case where several independent systems of the same kind are 
observed. © 1998 Elsevier Science Limited. 

1 I N T R O D U C T I O N  

For maintained and repairable systems it is important to 
detect possible changes in the pattern of  failures. For 
example,  reliabili ty growth corresponds to times between 
failures becoming longer as time goes, whereas various 
aging effects lead to shorter interfailure times. 

In practice, decisions concerning the failure pattern have 
to be based on observed failure data and statistical methods. 
It is the purpose of  this paper to study methods for trend 
testing in failure data from repairable systems. 

Fig. 1 illustrates the failure process observed for a single 
repairable system put into operation at time t = 0. The 
successive failure times Tl, T2 .... are often called the arrival 
times, while the times between failures, XI, X2 .... are called 
the inter-arrival times. In Fig. 1, the repair t imes are set to 0, 
as will be done throughout the paper. This is a reasonable 
assumption if the repair times are negligible compared to the 
inter-arrival times, and can in any case be justified if we let 
the time scale be operating time. The failures are assumed to 
be point events occurring in instants of  time. 

We say that there is a trend in the pattern of  failures if the 
inter-arrival times tend to alter in some systematic way, 
which means that the inter-arrival times are not identically 
distributed. The question we wish to answer is whether such 
an alteration is statistically significant or not. 

A trend in the pattern of  failures can be either monotonic 
or non-monotonic.  In the case of  a monotonic trend the 
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system is said to be improving if  the inter-arrival t imes 
tend to get longer (a decreasing trend), and the system 
is said to be deteriorating if the inter-arrival t imes tend 
to get shorter (increasing trend). Various types of  non- 
monotonic trend can be present, in particular we mention 
the cases of cyclic trend and bathtub trend. If  the inter- 
arrival times tend to alter in some cyclic way between 
longer and shorter, we have a cyclic trend. A pattern of  
failures is said to have a bathtub trend if there is a decreas- 
ing trend in the beginning, then a period with no apparent 
trend, and finally an increasing trend at the end of  the 
observation interval. 

Perhaps the most common type of  trend in the pattern 
of  failures from a mechanical  system is increasing or bath- 
tub-shaped trend. A typical example of a system with 
decreasing trend is a software system, and systems exposed 
to seasonal or other cyclic varying stresses might have a 
cyclic trend. 

The following argument explains why bathtub trend often 
is plausible: When a system is new there are often 'infant 
i l lnesses '  present, and as these are weeded out we observe a 
decreasing trend. After the ' infant illness'  phase the system 
reaches the 'useful l ife '  phase characterized by no trend. 
Finally, as the system gets old the 'wear-out '  phase with 
increasing trend occurs. 

Ascher  and Feingold I point out that since we only can 
observe a process during a l imited time interval, it is diffi- 
cult to know whether the trend we have observed propagates 
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into the future or not. For example,  assume that we have 
detected a significant increasing trend in our data. Then we 
should bear in mind that we really do not know whether the 
increasing trend continues, or whether we, for instance, 
have observed a portion of  a slow oscillation. 

Finally, one should remember  the fact that the choice of  
t ime scale influences the pattern of failures. Using calendar 
time, operating time, mileage or cumulative repair cost as 
the time scale for a car will probably give quite different 
patterns of  failures. 

The most widely used model for repairable systems is the 
nonhomogeneous Poisson process (NHPP). Not only is this 
a flexible and mathematical ly tractable model, but it can 
also be given a theoretical justification in many applications 
( 'minimal  repair ') .  For a description of  other models we 
refer to Ascher and Feingold I. 

In this paper, we restrict attention to NHPP models and 
study various properties of  mainly three different trend tests. 
Among these are the Laplace test and the Militar3' Hand- 
book test which are bel ieved to be the most popular trend 
tests. These are tests constructed for the alternative hypoth- 
eses of  monotone trend (i.e. either decreasing or increasing 
trend). In order to be able to detect other kinds of  trend, e.g. 
bathtub-shaped trend, we suggest in addition a new trend 
test based on the total time on test (TTT) plot for NHPPs 2, 
using the Anderson-Dar l ing  statistic 3. Closely related to 
this test is a test based on the Cram~r -von  Mises statistic 4'5, 
which will also be briefly considered. In fact, this was our 
original choice, while the successful use of  the Ander son-  
Darling statistic came up as a suggestion from a referee. 
These tests should, by their construction, be able to detect 
a variety of departures from the 'no trend' situation. Neces- 
sarily, such a good 'overal l '  property should imply less 
power than the Laplace and Mili tary Handbook tests when 
used against monotonic alternatives. A simulation study has 
been performed in order to figure out how much one loses in 
these cases by using the new test. On the other hand, the 
simulation study is also able to show how much better the 
new test is in the bathtub case. 

An earlier power study, considering various tests for trend 
in NHPPs, has been conducted by Bain et al. 6. They studied 
the power properties of a number of  tests, including the 
Laplace and the Mili tary Handbook test, against the one- 
sided hypothesis of an increasing intensity function. They 
conclude that the Laplace test and the Mili tary Handbook 
test are the best tests in their study. Cohen and Sackrowitz v 
gave a theoretical explanation of  these findings and show 
that the Laplace test and the Mili tary Handbook test have 
desirable properties against monotonic alternatives. None of 
the other tests considered in Bain e t  a l .  6 has been included in 
our simulation study. 

If  more than one process is observed, we might want to 
perform a simultaneous trend test using all the processes 
together. We discuss generalizations of  the Laplace test 
and the Mili tary Handbook test to the case of more than 
one process. Properties of  the standard generalizations of 
the tests are compared by simulation to the properties of 

an alternative generalization based on a total time on test 
concept. A comparison with the Anderson-Dar l ing-based  
test is also presented. 

It should be stressed that within the NHPP framework of 
the present study, no trend will correspond to an assumption 
of  homogeneous Poisson process (HPP) of the failure pro- 
cess. In practice, however, no trend may instead mean that 
failures follow a renewal process. Well  known tests for the 
null hypothesis of a renewal process are I the Mann and the 
Lewis-Robinson tests. These tests are not included in this 
paper, however. In fact, when attention is restricted to 
NHPP models and the null hypothesis of HPP, these 
tests are outperformed by the tests specially constructed 
for NHPP models. For a comparison of the Mann test and 
the Lewis -Robinson  test with the Laplace test and the 
Military Handbook test, we refer to Lindqvist et al. 8. A 
major message in that paper is that the use of tests like the 
Laplace test and the Military Handbook test in non-NHPP 
situations may be strongly misleading and give invalid 
conclusions. 

2 IDENTIFICATION OF TREND 

2.1 The nonhomogeneous  Poisson Process (NHPP)  

We refer again to Fig. I. Let N(t) be the number of events 
(failures) occurring in the time interval [0,t]. The counting 
process {N(t),t >-- 0} is called a nonhomogeneous Poisson 
process (NHPP) with intensity function X(t) if (1) N(0) = 0, 
(2) the number of  events (failures) in disjoint time 
intervals are stochastically independent, (3) P(N(t + At) - 
N(t) = 1) = X(t)At + o(At) as At---* O, and (4) P(N(t + At) -- 
N(t) >-- 2) = o(At) as At ---* 0. (The last assumption assures 
that two or more events cannot take place simultaneously.) 

It is well known that the intensity function X(t) coincides 
with the ROCOF (Rate of Occurrence of Failures) asso- 
ciated with the repairable system j. 

Further, letting the cumulative intensity be given by 

A(t)=~r<,~(u)du, 

the number of events in an interval [t,t + v], i.e. N(t + v) - 
N(t), has a Poisson distribution with mean A(t + v) - A(t). 

Popular parameterizations of X(t) in applications to 
repairable systems are the power law intensity 

X(t) = c~/3t ~ -  l, c~, t3 > 0, t -> 0 

and the log-linear intensity, 

X ( t ) = e  ~+~r, - ~ c < c ~ , / 3 < c c ,  t_>0  

The NHPP with constant intensity X(t) --= ~ is called a 
homogeneous Poisson process (HPP). The HPP is a process 
with no trend, while the NHPP permits the modeling of 
trend via the intensity function )x(t). 
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Fig. 1. Arrival times, Ti, and inter-arrival times, X i. 

2.2 The repairable  system model  

In the NHPP framework, the object is to decide whether a 
HPP or NHPP is the most relevant model. Both graphical 
and statistical methods are at hand. In this paper, we shall 
mainly pay attention to statistical methods, but some gra- 
phical methods will be considered first. 

We shall assume that m --> 1 independent systems, mod- 
eled by independent NHPPs with a common intensity func- 
tion X(t), are observed. The ith system is observed in the 
time interval (ai, bi] with ni failures occurring at times T 0, 
j = 1,2 . . . . .  hi. 

Note that the endpoints of  the observation intervals (ai, bg] 
may have different interpretations, according to the censoring 
schemes that are used. Two common censoring schemes are 
t ime truncation and fa i lure  truncation, defined in the following. 

For time truncation the system is observed during a pre- 
specified (operation) time. The observed number of  failures 
is thus a random variable. 

For failure truncation the system is observed until a pre- 
specified number of  failures has occurred. The length of  the 
observation interval is now random. 

Censoring strategies are important because data obtained 
by different censoring schemes are stochastically different. 
Hence, data must be treated differently depending on which 
censoring scheme is actually used. 

2.3 N e l s o n - A a l e n  plot 

A nonparametric estimate of  the cumulative intensity 
t 

function A(t)  = J'0 X(u)du is given by 

/~(t) = Z 1 

where Y(To) is the number of  systems which are operating 
immediately before time T o and A(t) = 0 for t < minuT/~. 
This estimator is studied, for example, in Andersen et al. ~. 

The N e l s o n - A a l e n  plot is simply the plot of/~(t) versus t, 
essentially a scatterplot of the points (t O, -~(tij)). If  no trend is 
present, i.e. A(t)  is proportional to t, then the plot will tend to 
be nearly a straight line. Deviation from the straight line 
indicates some kind of  trend. 

If  only one system is observed (m = 1), the Nelson-  
Aalen plot is simply a plot of  cumulative number of  failures 
versus operating time, which is the common way of  plotting 
failure data from single repairable systems. 

Note that the Nelson-Aalen plot may be misleading if all 
the a i are greater than 0, or more generally if there are time 
intervals inside the interesting time domain with no pro- 
cesses under observation. 

2.4 TTT  plot 

The TTT (Total Time on Test) plot is most well known as a 
graphical technique for data from nonrepairable systems l°. 
A TTT plot for repairable systems data has been introduced 
by Barlow and Davis 2, based on the NHPP model. As above, 
assume that m independent NHPPs with common intensity 
function ~,(t) are observed, and assume that all observation 
intervals (ai, bi] are contained in some time interval (0,S]. If  
n i  failures occurred in (ai, bi] , let N = ~m= lni • Let Sk denote 
the kth arrival time in the superposed process, i.e. Sk is an 
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Fig. 2. Typical shape of TTT plot from NHPPs with decreasing, increasing and bathtub-shaped intensity function. 
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arrival time in one of the processes and 0 < S 1 ~ S 2 ~ . . .  

SN <-- S. Let p(u) denote the number of processes under 
observation at time u and let T ( t ) =  f~p(u)du denote the 
total time on test from time 0 to time t. 

The (scaled) TTT plot for NHPPs is a plot of  the scaled 
total time on test statistic 

T(Sk) J(i ~p(u)du 
S 

T(S) --  ~QP(u)du (1) 

versus scaled failure number k/N,k  = 1 .... ,N. If p(u) =- m, 
then the scaled TTT plot is a scaled Ne l son-Aa len  plot 
with the axes interchanged. 'No trend' corresponds to a 
TTT plot located near the main diagonal. Various possible 
shapes of the TTT plot may give indications of the type of  
trend. Typical  shapes of  plots from NHPPs with decreasing, 
increasing and bathtub-shaped intensity functions are illus- 
trated in Fig. 2. 

The points (k/N, q-(sk)/q-(S)) in the TTT plot are often 
connected with straight lines. 

2.5 Laplace's  test 

Laplace ' s  test for a single system is a test of the null hypoth- 
esis H0: HPP, versus the alternative hypothesis H~: NHPP 
with monotonic intensity function. 

If a process is observed in the time interval (a,b] and 

{ ~  if the process is time truncated 
h =  " 

1 if the process is failure truncated 

then the test statistic 

~ ; =  1 Tj - 1 ~h(b + a) 
L -= (2) 

~ / ~ 2 h ( b  - -  a )  2 

is asymptotically standard normally distributed under the 
null hypothesis, i.e. when the underlying process is a HPP. 
The approximation with the normal distribution turns out to 
be very good, a rule of thumb says that n -> 3 suffices. The 
test is optimal for the null hypothesis (HPP) when the alter- 
native is a NHPP with log-linear intensity function, if the 
exact null distribution of  L is used 6'll. 

The intuitive idea behind this test is to compare the mean 
value of the failure times with the midpoint  of  the observa- 
tion interval. Under the null hypothesis of  a HPP, T~ ..... T6 
are the order statistic from a uniform distribution on (a,b], 
and it follows that ~ y _  1 ~ has expectation h(b + a)/2 and 
variance h ( b -  a)2/12. This explains why eqn (2) is asymp- 
totically standard normally distributed under the null 
hypothesis. If  there is a monotone trend in the failure data, 
the mean value of the failure times will tend to deviate from 
the midpoint.  The value of  L indicates the direction of the 
trend. If  L < 0 we have a decreasing trend and if L > 0 we 
have an increasing trend. 

The generalization of  the Laplace test to more than one 
process can be done in several ways. A straightforward 
generalization of  eqn (2) if we have observations from m 
independent processes is 

m ~ T m 1 
E i =  I ~ j  = 1 ij - -  ~ i =  1 ~hi(bi + a i )  

Lc = (3) 

i ~--~E~= ,hi(bi - ai)2 

The test based on this statistic is optimal for the null 
hypothesis of HPP, possibly with different intensities in 
each HPP, against the alternative of NHPPs with intensity 
k(t) = e '~'+~t where/3 is common for all processes, while o~ i 
is specific for each process ~ ~. We call this test the combined 
Laplace test. 

2.5.1 YTT-based generalization of  the Laplace test 
A different way of generalizing the Laplace test to more 
than one process which we have not seen in the literature 
is to use the TTT-statistic [eqn (1)]. As in Section 2.4, we 
assume that we have observations from m independent 
NHPPs with identical intensity function k(t), and that 
each process has been observed in a subset of  the time 
interval (0,S]. The superposed process has intensity function 
3,(t) = X(t)p(t), and under the null-hypothesis of  no trend, 
i.e. X(t) ~ X, it has cumulative intensity function P(t) = T(t). 
It follows from results on stochastic time changes 9, that the 
time transformed process I ' (S0  ..... I'(SN) is a HPP with 
intensity one. Consequently, the process '~(S~) ..... T(SN) is 
a HPP with intensity X. 

Thus, ~2 if the process is failure truncated, T(SI), 
.... T(SN_D will have the same distribution as the order sta- 
tistic corresponding to N - 1 independent random variables 
uniformly distributed on the interval (O,T(SN)]. Similarly, if 
the process is time truncated, then conditional on the 
number of  failures, N, q-(S0 ..... T(SN) will have the same 
distribution as the order statistic corresponding to N inde- 
pendent random variables uniformly distributed on the 
interval (0,T(S)]. Notice that in the case of failure truncated 
processes T(S) = T(SN). Define ~" as 

A/= ~ N if the processes are time truncated 

t N -  1 if the processes are failure truncated 

We conclude that (conditional on the total number 
of  failures, N, in the case of  time truncation) 
(T(SD/T(S),  k = 1 .... , N), is distributed as the order statistic 
of N uniform (0,1) random variables. Hence, 

^ T(SD l ^ 
- - - -  - N  E~= l T(S) 2 

Lr = (4) 

is asymptotically standard normally distributed under the 
null hypothesis that all processes are HPPs with identical 
intensities. We will call this the TTT-based Laplace test. 
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Notice that eqns (2)-(4)  are identical in the case of  only 
one process. 

Recall that this is a test of  a more restrictive null hypoth- 
esis than the combined Laplace test, which tests the null 
hypothesis of  HPPs with possibly different intensities, 
while the TTT-based Laplace test tests the null hypothesis 
of  HPPs with equal intensities. Hence, if the combined 
Laplace test rejects the null hypothesis we can conclude 
that we have a trend in our data, while if the TTT-based 
Laplace test rejects the null hypothesis we can only con- 
clude that we do not have data from HPPs with identical 
intensities. Consequently, the TTT-based tests should be 
used only if we have reasons to believe that the systems 
are fairly homogeneous. These matters are further discussed 
in the simulation study. 

2.6 Military Handbook test 

This is another test constructed for the null hypothesis of  a 
HPP versus the alternative of  NHPP with monotone trend. 
The test statistic for a single system observed in the time 
interval (a,b] is 

h b - a  
M = 2  ~-~ In ( ~ )  (5) 

j= l  

which, is (exactly) chi-square distributed with 2r~ degrees of  
freedom under the null hypothesis 13. 

The one sided Military Handbook test, which tests the 
null hypothesis of  a HPP against the hypothesis of  an 
increasing trend, is the optimal test when the alternative is 
a NHPP with increasing power law intensity function 6. 

This test is based on the observation that if U is uniformly 
distributed on (0,1], then - 21n(U) will be chi-square dis- 
tributed with two degrees of  freedom. Thus, since T1 ..... Ta 
under the null hypothesis are distributed as the order statistic 
from a uniform distribution on (a,b], this explains the null 
distribution of eqn (5). If we have a monotonically increasing 
trend, the test statistic M will become small compared to the null 
distribution, because then the failure times Tj ..... Ta will tend to 
be larger than the order statistics from the uniform distribution 
on (a,b]. Similarly, if we have a decreasing trend, M will be large 
compared to the null distribution. 

The straightforward generalization of  eqn (5) to more 
than one process is 

m h, ( bi _ ai ~ 
Mc 2 \ Tij _ a i /  

which is (exactly) chi-square distributed with 2q degrees of  
freedom, where q = E~= l t~i ,  under the null hypothesis of  
HPPs (possibly with different intensities). We call this 
the combined Military Handbook test. 

Under the null hypothesis of  independent HPPs with 
identical intensities, the test statistic 

M T = 2 ~" In (7) 

is chi-square distributed with 2hi degrees of  freedom, and 
we call this the TTF-based Military Handbook test. 

3 A N E W  TEST BASED ON T H E  TTT PLOT 

The TTT plot was presented in Section 2 as an appropriate 
graphical method for visualizing trend in data from NHPPs. 
Moreover, we suggested TTT-based versions of  the Laplace 
and Military Handbook tests. In this section, we shall 
demonstrate how a new statistical trend test based on the 
TTT plot can be obtained. As for the TTT-based versions of  
the Laplace test and the Military Handbook test, in the case 
of  more than one process this is a test of  the null hypothesis 
of  identical HPPs. 

One interesting feature of  the test we shall derive is that it 
can be used to detect bathtub-shaped or other non- 
monotonic intensity functions. 

Recall from Section 2.4 that in the 'no trend' case, the 
TTT plot tends to lie near the diagonal. Departures from this 
case, for example when the underlying intensity function is 
monotonically increasing, decreasing or bathtub shaped, 
will tend to increase the area between the TTT plot and 
the diagonal. This suggests that a test statistic for the null 
hypothesis of  a HPP could be based on some function 
related to this area. 

As in Section 2.5.1, we assume that we have N observa- 
tions Sl ..... SN from m --> 1 processes observed on [0,S], 
where Si is the ith arrival time in the superposed process 
and SN <- S (see Section 2.4). 

Recall the derivation of  the TTT-based Laplace test 
where we show that (T(Sk) /q ' (S) ,k=l  ..... ,~/), has the 
same distribution as the order statistic based on/~/i.i.d, uni- 
form (0,1) variables. We conclude that the empirical distri- 
bution function of  g-(S~)/q'(S), k = 1,..., N, which is 

k - 1 ~r(sk_ 1) ~r(sk) 
FN(V)-- 1~ ' T(S) < v <  T(S) 

approaches the cumulative distribution function of  the uni- 
form (0,1) distribution as N increases. Next define the 
process 

CN(I) ) : V/~(FN(V) -- O), 0 ~ O ~ 1 

By its definition, CN defines a measure of  the distance 
between the TTT plot and the diagonal. Andersen et al. 9 
suggest the signed area between the TTT plot and the diag- 
onal, f~ CN(v)dv, as a measure of  departure from the HPP 
assumption. They arrive at an easily evaluated asymptoti- 
cally normal test statistic, but since they are using the 
signed area their test has the serious drawback of  having 
very low power against non-monotonic trends that places 
area on both sides of  the diagonal in the TTT plot, e.g. 
bathtub-shaped trend. Another test proposed by Andersen 
et al. 9 is to use the Kolmogorov statistic maxve[o, 11 ]CN(v)] as 
a test statistic. This test should be able to detect both mono- 
tonic and non-monotonic trend, but the convergence of  the 
test statistic to its asymptotic distribution seems to be very 
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slow. In our simulation studies this test achieved a far too 
low actual level for the moderate sample sizes considered 
(even with as many as 500 failures it did only achieve an 
actual level of  about 4% when the nominal level was 5%). 
Thus, critical values of  this test should be computed by 
other means than the asymptotic distribution. This test is 
not further discussed in the presentation of  the simulation 
study. 

In order to get a test statistic with fairly good power both 
against monotonic and non-monotonic trends, inspired by 
Aarset 14, we shall first propose the test statistic 

W u ----- 2N(V)dv (8) 

which (except for the squaring) can be viewed as a measure 
of  the (unsigned) area between the TTT plot and the diag- 
onal. Since F(v) = v is the cumulative distribution function 
of  the uniform (0,1) distribution and FN(V) is the empirical 
distribution function for data which under the null hypoth- 
esis are uniform (0,1) distributed, eqn (8) is a Cramdr-von 
Mises statistic 4'~, and we call the test based on this statistic 
the Cramdr-von Mises test for trend. A possible improve- 
ment of  the Cram6r-von Mises test is the Anderson-  
Darling test 3 given by the test statistic 

I 1 
AN= ~ o C 2 ( v ) ~ v  (9) 

We shall call the test based on this statistic the Anderson- 
Darling test for trend. The difference between the two 
statistics (8) and (9) is the weight function l / v ( 1 -  v) in 
the latter, which has the effect of giving greater importance 
to observations in the tails, counteracting the fact that 
FN(V) -- v approaches zero in each tail. The asymptotic dis- 
tributions of  eqn (8) and (9) were derived by Anderson and 
Darling 3. A nice practical review of these and related tests, 
containing percentage points for the asymptotic distribu- 
tions, was given by Stephens 15. An explicit expression for 
the limiting cumulative distribution function (9) was given 
by Anderson and Darling 16, 

1 4 
P(A <-- a) : V/~ ~ ,  ( - 1 )]F(j + 7) ( j + 1) 

a j=o J[ 

X e [(4j+ l)2~rZl/(Sa) 

f~eal[8(w~ + : 2 X l)l- [(4j + 1) r w-l/(Sa)dw" 
J0 

This is a good approximation of the exact distribution even 
for very small samples. Using the asymptotic distribution, 
on a 5% level the null hypothesis of  no trend is rejected if 
A N ~ A 0.05 = 2.492. 

For practical implementations, straightforward calcula- 
tions from eqn (8) and (9) lead to the test statistics, 

WN= ~ ['T(Si) 2 i - 1 ]  2 1 

i=, L q'(s) 2 ~  J + 12--~ 

for the Cram~r-von Mises test for trend and 

1 q-(Si), 
AN = -- ~ [  E ( 2 i -  1) ( ln(7~j- )  

i :1  

+ln(1  T(SN+ l -  i ) ) ) l - N  (I0) 
q-(s) 

for the Anderson-Darl ing test for trend. 
In our simulation study, the Anderson-Darling trend 

test essentially seems to behave uniformly better than the 
Cram~r-von Mises trend test, and thus with a few excep- 
tions only, the Anderson-Darling trend test is the only one 
mentioned in the simulation study. More specifically, 
against monotonic trend there are only minor differences 
in power between the two tests, probably explained by a 
bit too low actual level for the Cram~r-von Mises trend 
test on moderate sample sizes, while against bathtub-type 
trend the Anderson-Darl ing trend test represents a consid- 
erable improvement over the Cram~r-von Mises trend test, 
as we would expect since the former puts more weight to 
observations near the endpoints. 

The Anderson-Darl ing trend test should be used in close 
connection with visual inspection of the TTT plot or a 
Nelson-Aalen plot. Situations where the null hypothesis 
is rejected but the intensity function is neither increasing, 
decreasing nor bathtub shaped can be thought of; for 
instance cyclic trend or other non-monotonic trends. 
Although it may be difficult to classify the type of trend 
in certain situations, at least we know after rejection that 
if the NHPP assumption is valid, and only one or identically 
distributed processes are observed there is some kind of 
departure from the 'no trend' situation. The TTT plot or 
the Nelson-Aalen plot then gives a qualitative description 
of  this departure. If more than one process is observed, 
individual plots for each process should be made as well. 
These plots can both visualize the individual trend in each 
process, and possibly help to distinguish situations with real 
trend from situations with heterogeneous HPPs. 

4 S I M U L A T I O N  STUDY 

In order to compare the properties of the new tests to the 
commonly used Laplace test and the Military Handbook 
test, a simulation study has been carried out. The simula- 
tion code is written in C, and the C-function random()  is 
used as random number generator, with the generation of 
seeds connected to the system clock as well as iteration 
number. 

4.1 S ing le  s y s t e m s  

We consider first the case m = 1 when one single system is 
observed. In this case, the TTT-based versions of the 
Laplace and Military Handbook test are not considered as 
they are exactly equal to the original tests. Thus, we con- 
sider the ordinary Laplace test, eqn (2), the ordinary 
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Fig. 3. Simulations of a HPP with intensity 1. Failure truncation with the number of failures ranging from four to 90, and time truncation 
with the expected number of failures ranging from four to 90. Twenty thousand replications for each number of failures. 

Military Handbook test, eqn (5), and the Anderson-Darl ing 
trend test, eqn (10). 

For each simulated process we consider the time from 
t = 0. When simulating a failure truncated process, the pro- 
cess is run until the prespecified number of  failures has 
occurred. For time truncated processes, the truncation time 
is determined so that the expected number of  failures equals 
the prespecified 'number of  failures' (the actual number of  
failures will vary, and now and then it will even happen that 
no failures has occurred before the truncation time. This 
happened very rarely though, and at these few occasions 
we simply simulated a new process). For each run, a 
choice is made for the X(t)-function. 

For each given choice of  truncation mechanism, number 
of  failures and intensity function, the aim is to estimate the 
probability of  rejection of  the null hypothesis of  'no trend' 
(i.e. HPP) for each of  the three tests. This is accomplished 
by simulating (usually) 10,000 processes with the same 
setup, and recording the relative number of  rejections 
(absolute number divided by 10,000) for each test. 

If the simulated process is a HPP, the estimated rejection 
probability is called the actual level, which we interpret as 
the true probability of  incorrect rejection. This may be dif- 
ferent from the nominal level, which is the desired level 
which is used for determining critical values. The difference 
between actual and nominal level results from the fact that 
in most cases critical values are computed from asymptotic 
approximations rather than the exact distributions. The 
nominal significance level has been set to 5% throughout 
the study. 

If the simulated process is not a HPP, there is a kind of  
trend. In this case, the estimated rejection probability is 
called the power of the test. The power as a function of  
the trend parameter is called the power function of the test. 

The estimated rejection probabilities of  course become 
more accurate as the number of  replications increase. 

Indeed, if we let ,6 denote the estimated rejection probabil- 
ity, then the standard deviation is V//3(1-b)/n,  which is 
bounded above by 1/(2V~ ). Thus, if n = 10,000, the stan- 
dard deviation is no larger than 0.005. 

The following abbreviations are used in the graphs: 
Laplace--The Laplace test, eqn (2), Mil-hbk--The Mili- 
tary Handbook test, eqn (5), A - D - - T h e  Anderson-Darling 
trend test, eqn (! 0). 

Note that the displayed curves, except for Fig. 3, are 
spline interpolations connecting the observation points. 

4.1.1 Level properties 
Fig. 3 displays the actual level of  the Anderson-Darling 
trend test for a varying number of  failures and data 
simulated from both a failure truncated and time truncated 
HPP. 

The graphs show that the Anderson-Darl ing trend test 
achieves the correct actual level of  5% with satisfying accu- 
racy even for very small sample sizes, and for both failure 
and time truncated processes. 

As regards the Laplace and the Military Handbook tests, 
the latter keeps an exact level for HPPs, while the former is 
approximately exact even for as low as three failures. 

4.1.2 Power properties 

4.1.2.1 Log-linear intensity function. In this case ?~(t) = 
e ~+~t, and A(t)=e '~(e ~ t -  1)//3. Thus, if/3 < 0 we have a 
finite limit limt_~A(t)=e~/U3l. This means that with 
probability 1, only a finite number of failures will occur 
during infinite time. In order to avoid difficulties arising 
from this, we have simulated only the increasing case, 
~ > 0 .  

Figure 4 presents estimated power functions with data 
simulated from failure and time truncated NHPPs, respec- 
tively, with log-linear intensity function and 15 (expected) 
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failures. We observe that the Laplace test is the most power- 
ful test, as expected, since it is the optimal test in this situa- 
tion. The Anderson-Dar l ing  trend test has larger power than 
the Mili tary Handbook and is only slightly less powerful 
than the Laplace test. We also observe that the power func- 
tions are quite similar in the failure truncated and time 
truncated cases, with slightly higher power for time 
truncated processes. 

When 35 failures are simulated, see Fig. 5, the same 
picture as in Fig. 4 is seen, but the differences between 
the tests are smaller, and the power functions are of  course 
steeper. 

4.1.2.2 Power law intensity function. When data are 
simulated from a NHPP with power law intensity 
function, Mt) = oa3t ~-~, both data with decreasing 
( 0 < / 3 <  1) and increasing (/3 > 1) trend can be 
simulated. Figure 6 displays graphs of estimated power 
functions with data simulated from NHPPs with power 
law intensity function and 15 failures (expected number 
for time truncated process). We observe that the Mili tary 
Handbook test is the test with largest power, as expected, 
since this test is the optimal test in this case. The Laplace 
test is a bit stronger than the Anderson-Dar l ing  trend test 
against increasing trend, while the Anderson-Dar l ing  trend 
test is stronger than the Laplace test against decreasing 
trend. Again there are no big differences between the 
failure and time truncated cases. 

W h e n ' 3 5  failures are simulated, see Fig. 7, the same 
effects are observed, the only difference being that the 
power functions are steeper and the Anderson-Dar l ing  
trend test and Laplace test are almost identical against 
increasing trend. 

4.1.2.3 Bathtub-shaped intensity function. A simple 
example of  a bathtub-shaped intensity function is given in 
Fig. 8. The intensity function has been divided into three 
phases, I, II and III, which may be identified as the ' infant 
illness'  phase, 'useful life'  phase and 'wear  out'  phase, 
respectively. 

Data have been simulated from NHPPs with 12 different 
bathtub-shaped intensity functions, described in Table 1 by 
specifying the expected number of failures in each phase 
and the slope of  the intensity function in phase I and phase 
III. Note that the expected number of failures in each 
phase are easily found to be, in phase I, A(tl) : 
t l (b+ 1)/2, in phase II, A(t2) - A(tl) = t2 -- tl and in 
phase III, A(7-) -  A ( t 2 ) :  (7- -  t2)(c + 1)/2. 

Both time and failure truncated processes are simulated. 
The time truncated processes are truncated at time 7-, while 
the number of  failures simulated in the failure truncated 
process equals the sum of  expected number of  failures in 
each phase. If the last simulated arrival time(s) are larger 
than 7- in the case of  a failure truncated process, the intensity 
function in phase III is extended beyond 7-. Results of  the 
simulations are given in Tables 2 and 3. For the sake of 
illustration of  the difference between the Cram6r-von  

Mises trend test and the Anderson-Dar l ing  trend test, the 
Cram6r-von  Mises trend test has also been included in these 
simulations. 

The Anderson-Dar l ing  trend test is clearly the best test as 
it is the most powerful test in all of  these situations. The 
Cram6r -von  Mises trend test is generally the second most 
powerful test, but the Anderson-Dar l ing  trend test is defi- 
nitely better. The other tests are quite powerful in some of 
the considered situations, but have very low power in other 
situations, making them unsuitable as tests against bathtub 
trend. 

4.2 Several processes 

Now we proceed to consider the case m > 1. There is of  
course a huge number of  situations to consider, with varying 
numbers of  observed processes, various censoring schemes, 
different kinds of  heterogeneities, etc. This is by no means a 
thorough study of  the m > 1 case, only a few situations are 
considered to get a first feeling on how the various tests 
behave in this case. 

For monotonic trends we have simulated data with two 
different designs. With the first design we have simulated 
data from m = 5 independent processes which are started at 
time t -- 0, but are observed over different, but partially 
overlapping, time intervals. The observation interval for 
each process has been chosen such that the expected number 
of failures in each interval equals five, but with different 
starting points for each interval. Hence, the expected total 
number of failures is 25. A symbolic illustration is given in 
Fig. 9. The position and length of each interval on the time 
axis will of  course depend on intensities in each process. 

The second design used to simulate data with monotonic 
trend also simulate data from m -- 5 independent processes, 
but this time we have observed all the processes from time 
t = 0. In the first process we let the length of  the observation 
interval vary, corresponding to a varying expected number 
of failures in this interval. In the other four processes the 
length of  the observation intervals has been chosen such that 
the expected number of failures in each process equals three. 
A symbolic illustration for the case when the expected 
number of  failures in the first interval, n l ,  equals 12 is 
given in Fig. 10. 

4.2.1 No heterogeneities 
First we consider the case where each process is simulated 
from NHPPs with identical intensity functions Mt) for t > 0. 
In the first example we have simulated data using the first 
design mentioned above, i.e. the ith process is observed in 
an interval [ai, bi] where a i and h i a r e  chosen such that the 
expected number of  failures before and in the ith interval 
is as indicated in Fig. 9. Data are simulated from both a 
log-linear and a power law intensity function, and the 
results are shown in Fig. 11. The abbreviations used now 
are, Laplace--The combined Laplace test, eqn (3), 
Laplace-77T--The TTT-based Laplace test, eqn (4), 
Mil-hbk--The combined Mili tary Handbook test, eqn 
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(6), Mil-hbk-77T--The TTT-based Military Handbook 
test, eqn (7), A - D - - T h e  Anderson-Darl ing trend test, 
eqn (10). 

We realize that the TTT-based tests (the Anderson-  
Darling trend test, TTT-based Laplace test and TTT-based 
Military Handbook test), are far more powerful than the 
combined Laplace test and Military Handbook test. The 
relationships between the TTT-based tests in the power 
law case are the same as the relationships between the 
Anderson-Darl ing trend test, Laplace test and Military 
Handbook test shown in Figs 6 and 7 in the one process 
case, and for the log-linear case the relationship is the same 
as the relationship seen in Figs 4 and 5. Also notice that, in 
contradiction to the picture on Figs 6 and 7, the Laplace test 
has more power against increasing power law trend than the 
Military Handbook test in the studied case with five pro- 
cesses. Additional simulations indicate that this seems to 
happen when data are simulated from more than about 
three processes. 

One possible explanation of  the success of  the TTT-based 
versions of the Laplace test and the Military Handbook test 
in the above example is that while the TTT-based tests 
superpose all the five processes to one process with a mono- 
tonic trend, the combined Laplace test and combined Mili- 
tary Handbook test search for trend within each single 
system (which they have to do since they allow for hetero- 
geneities between the processes). It might also be argued 
that the design used is a bit artificial. The alternative design, 
Fig. 10, is probably closer to a typical practical situation, 
and if we are varying the expected number of failures in the 
first process we can get a picture of  how the TTT-based tests 
behave compared to the other tests as the first process is 
more or less dominating. We have chosen two power-law 
intensities, k(t) = t ~-1 with respectively /3 = 1.5 and 
/3=0.75,  i.e. respectively, increasing and decreasing 
trend. We let the expected number of  failures in the first 
process, nl(see Fig. 10), vary from three to 120, and rejec- 
tion power as a function of  this expected number is dis- 
played in Fig. 12. We see that for n l = 3, i.e. when all 
the five processes have been observed over the same inter- 
val, the TTT-based and combined versions of the Laplace 
test and the Military Handbook test coincide [which is easily 
seen from eqn (3) and (4), and (6) and (7)]. Otherwise, the 
TTT-based tests are stronger. Even when the expected 
number of  failures in the first process is much larger than 
the total expected number of  failures in the four other pro- 
cesses (12), the TTT-based tests are much stronger. The 
reason why the TTT-based tests are far better than the 
other tests is probably that these tests, making the stronger 
assumption of  equal intensities, are using the information in 
the four processes observed over a short time interval more 
efficiently than the combined tests. As the combined tests 
have to allow for heterogeneities in the various processes 
they cannot extract the same amount of  information from 
the four processes observed over a short time as the TTT- 
based test which superposes all observations into one 
process. 

Data from several NHPPs with the same bathtub-shaped 
intensity functions are simulated as well. Five processes are 
simulated and the 12 intensity functions described in Table 
1 are used. However, now the processes are not observed 
over the entire time interval [0, r]. One process is observed 
only in phase I (see Fig. 8), one observed only in phase II, 
one only in phase III, one observed in phases I and II, and 
the last process is observed in phases II and III. The results 
are presented in Table 4. Once again, the TTT-based tests 
are more powerful than the combined Laplace and Military 
Handbook tests, but the TTT-based Laplace test is not very 
much better than the combined Laplace test. The Anderson-  
Darling trend test is the most powerful test in all cases, 
while the TTT-based Military Handbook test is generally 
the second best test. 

4.2.2 Heterogeneities 
The results from the previous subsection seem to indicate 
that the combined Laplace and Military Handbook tests are 
completely outperformed by the TTT-based tests, but we 
should keep in mind that the latter tests are constructed 
for the more restrictive null hypothesis of  HPPs with iden- 
tical intensity functions, while the combined Laplace test 
and combined Military Handbook test allow heterogeneities 
in the HPPs under the null hypothesis of  no trend. To study 
the effect of  such heterogeneities, data are simulated from 
five processes with the observation interval for each process 
chosen according to the design in Fig. 9. NHPPs with inten- 
sity functions cti/3t ~ -  1 and e u~+#t a r e  simulated, where the 
c~is are varying from process to process, while the /3s are 
common for all processes. The results and choice of  para- 
meter values are given in Fig. 13. Notice that with our 
choices of  parameter values, the relative heterogeneities in 
the log-linear intensity functions are greater than the relative 
heterogeneities in the power law intensity functions (i.e. the 
range of  intensity values in the no trend case is about two 
times greater with the choice of  parameter values done in 
the log-linear case compared to the power law case). 

The picture in Fig. 13 clearly displays the problem with 
the TTT-based tests; they are not constructed to allow het- 
erogeneous intensity functions. In the power law case the 
tests achieve an actual level exceeding 0.1. In the log-linear 
case the TTT-based tests achieve a too low level. This dif- 
ference in level behavior between the two cases is of  course 
only explained by the difference in heterogeneities. The 
combined Laplace and Military Handbook tests behave 
reasonably well. The difference in level behavior of  the 
TTT-based tests seen in the two cases, with less severe 
level properties in the most heterogeneous case, is some- 
what unexpected. To investigate this further, some 
additional simulations of  HPPs with unequal intensity 
functions were performed. The observation intervals indi- 
cated in Fig. 9 are still used. Hence, the expected number of  
failures in each simulation is 25, and the results are given in 
Table 5. 

We see that the level behavior of  the TTT-based tests are 
somewhat unpredictable, and often they achieve a far too 
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Fig. 4. Simulations of a NHPP with intensity function X(t) = e ~t, where/3 = beta = {0,0.01,0.03,...0.40,0.45...,1,1.2,...,2.0}. Ten thousand 
replications for each beta-value. Failure truncation with 15 failures and time truncation with expected number of failures in each simulation 

equal to 15. 

high actual level. Thus, if we suspect considerable hetero- 
geneities in data from several processes, these tests should 
not be used. But we should also notice that in the case of only 
moderate heterogeneities, their level properties are tolerable. 
In fact, in these situations it could be favorable to use the TTT- 
based tests due to their far better power properties. In such 
cases the TTI ' -based Military Handbook test and Anderson- 
Darling trend test seem to have the best overall properties. 

5 CASE STUDY 

This is a simple example to demonstrate the use of  the 
trend tests. A dataset presented by Barlow and Davis 2 

is used. The data are failure truncated failure time data 
for 22 tractor engines. The pattern of failure times and 
a TTT plot for these failure times are displayed in 
Fig. 14. 

The TTT plot clearly indicates an increasing trend in 
the data. Results of the statistical trend tests are pre- 
sented in Table 6. All the trend tests reject the null 
hypothesis on a 5% level, hence we may safely conclude 
that there is an increasing failure trend in the tractor 
data. We noted a fairly large relative difference between 
the p - v a l u e s  o f  the T T T - b a s e d  tests  and  the  o ther  tests,  

which could indicate a possible heterogeneity between 
tractors. However,  even under possible heterogeneities 
among the tractors the HPP assumption is rejected since 
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the combined Laplace test and the combined Military 
Handbook test reject the null hypothesis. Moreover, 
according to investigations made by Elvebakk i7, there 
seem to be no indications of  heterogeneity in the tractor 
engine data. 

With a maximal number of  six observed failures for the 
single tractors, it is obviously difficult to analyze them indi- 
vidually. In fact, the null hypothesis of  no trend would be 
rejected only for tractor number 14. But assuming a com- 
mon trend for all the 22 tractor engines the conclusion is a 
significantly increasing trend. 

6 C O N C L U S I O N S  

6.1 Descript ion of  each test 

The properties of  each test are summarized below. 

6.1.1 The Laplace test 
The Laplace test is for single processes the most powerful 
test against NHPP with log-linear intensity function. In our 
study it was the least powerful test against NHPP with 
decreasing power law intensity and it is only slightly more 
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I I  I I I  

powerful than the Anderson-Darling trend test against 
increasing power law intensity. It has in general low 
power against NHPPs with bathtub-shaped intensity 
functions. 

If more than one process is observed, the combined 
Laplace test is not particularly powerful against bathtub- 
shaped and decreasing power law intensity functions, but 
it seems to be more powerful than the combined Military 
Handbook test both against increasing power law and log- 
linear intensity functions if more than three processes are 
observed. 

t l  t2 r 

Fig. 8. Example of bathtub-shaped intensity function. 

increasing trend. It is better than the Laplace test against 
decreasing and bathtub-shaped trend. 

6.1.2 The TIT-based Laplace test 
The TTT-based Laplace test generally has the same proper- 
ties compared to the other TTT-based tests as the original 
test has in the one process case, but it has poor properties 
against bathtub-shaped intensity functions. 

6.1.4 The TIT-based Military Handbook test 
The TTT-based Military Handbook test has the same prop- 
erties compared to the other TTT-based tests as the original 
test has in the one process case. It has good 'overall '  
properties. 

6.1.5 The Anderson-Darling trend test 
The Anderson-Darl ing trend test is by far the most power- 
ful test against NHPPs with bathtub-shaped intensity 
functions. Against monotonic trends the Laplace test is 
slightly better against NHPP with increasing power law 
intensity functions, in all other situations that we considered 
the Anderson-Darl ing trend test is the second most power- 
ful test against monotonic trend. 

6.1.3 The Military Handbook test 
The Military Handbook test is for single processes the most 
powerful test against NHPPs with power law intensity func- 
tion. It is the least powerful test against NHPPs with log- 
linear intensity functions, and has generally low power 
against bathtub-shaped trend. If more than one process is 
observed it is generally the least powerful test against 

6.2 Final comments  

It is obvious that no test is superior to the other tests in all 
situations. However, we feel that even for the single system 
case the Anderson-Darl ing trend test might be recom- 
mended as the best choice for general use. This is because 
the differences in power between the Anderson-Darling test 
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Fig. 9. Picture of expected number of failures in the processes. In case of a HPP the picture will be equal on the time axis, otherwise 
different. 
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Fig. 10. Picture of expected number of failures in the processes. In this example the expected number of failures in the first process, n l ,  
equals 12. In case of a HPP the picture will be equal on the time axis, otherwise different. 
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Fig. 11. Simulations of NHPPs with intensity function X(t) = t ~-1, where/3 = beta = {0.25,0.30,...,3.5 }, and from NHPPs with intensity 
function X(t) = e t~t, where /3 = beta = {0,0.01,0.03,...,0.40,0.45 ..... 1,1.2,..,2.0}. Ten thousand replications for each beta-value. Data 

simulated from five processes using the simulation design in Fig. 9. Expected total number of failures is 25. 
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and the respect ive opt imal  test against monoton ic  alterna- 
t ives,  are smal l  compared  to the di f ferences  between them 
against  nonmonoton ic  trends. 

If  more than one process is observed we  must  decide  
whether w e  want  to test the null  hypothes is  o f  identical 
HPPs or i f  w e  want to a l low for heterogeneous  HPPs 
under the null hypothesis .  In the former case, or with 
minor  deviat ions  from the former case, the A n d e r s o n -  
Darl ing trend test and the TTT-based  Military Handbook  
test have  the best 'all over' properties. In the latter case, 
the c o m b i n e d  Laplace  test or the c o m b i n e d  Military Hand- 
book test should be used. In fact, our s imulat ions  s h o w  that 
the TTT-based  tests ( including the A n d e r s o n - D a r l i n g  test) 

m a y  g ive  mis l ead ing  results in the presence o f  considerable 
heterogeneit ies .  

We conjecture that in the case o f  identical intensity func- 
tions o f  the systems,  the TTT-based  tests are a lways  at least 
as powerful  as the c o m b i n e d  ones. Intuit ively this is so since 
by making  stronger prior assumptions ,  one gets stronger 
inference results (as long as the assumptions  hold).  We 
have not found any situation which  contradicts this conjec-  
ture, but by calculat ions  and s imulat ions  not included in this 
paper w e  have found certain rather artificial situations where 
the c o m b i n e d  tests were only  sl ightly weaker  than the TTT- 
based ones.  This  was  in situations where the number  p(t) of  
observed processes increased strongly with time. 
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TIT-based tests for trend in repairable systems data 

Table 1. Description of  12 bathtub-shaped intensity functions 

27 

Slope Expected number of failures 

Function Phase I Phase III Phase I Phase II Phase III 

1 2 2 8 8 8 
2 1 1 8 8 8 
3 1/2 1/2 8 8 8 
4 2 1/2 8 8 8 
5 1 1 5 5 5 
6 1 1 15 15 15 
7 1 1 10 5 10 
8 1 1 5 10 5 
9 1 1 10 0 10 
10 0 1 0 10 10 
11 2 1 4 8 10 
12 1 1 10 8 4 

Table 2. Simulated power with bathtub-shaped intensity function number  1 -12  

Test Power 

1 2 3 4 5 6 7 8 9 10 11 12 

Laplace 0.25 0.22 0.17 0.24 0.16 0.26 0.20 0.17 0.14 0.49 0.27 0.36 
Mil-hbk 0.36 0.27 0.19 0.44 0.17 0.48 0.26 0.21 0.14 0.32 0.18 0.45 
C-vM 0.47 0.34 0.22 0.36 0.20 0.74 0.36 0.21 0.16 0.50 0.38 0.44 
A - D  0.70 0.50 0.32 0.56 0.28 0.91 0.51 0.33 0.22 0.56 0.52 0.55 

Ten thousand replications for each intensity function. Failure truncated processes. 

Table 3. Simulated power with bathtub-shaped intensity function number  1 -12  

Test Power 

1 2 3 4 5 6 7 8 9 10 11 12 

Laplace 0.13 0.11 0.09 0.15 0.10 0.12 0.11 0.10 0.08 0.53 0.25 0.29 
Mil-hbk 0.31 0.22 0.16 0.42 0.14 0.43 0.21 0.16 0.10 0.33 0.14 0.47 
C-vM 0.36 0.24 0.15 0.31 0.14 0.67 0.29 0.14 0.12 0.47 0.33 0.43 
A - D  0.66 0.45 0.28 0.51 0.24 0.89 0.48 0.27 0.18 0.61 0.53 0.51 

Ten thousand replications for each intensity function. Time truncated processed. 

Table 4. Simulated power with bathtub-shaped intensity function number  1 -12  

Test Power 

1 2 3 4 5 6 7 8 9 10 11 12 

Laplace 0.10 0.08 0.07 0.09 0.07 0.09 0.08 0.07 0.04 0.44 0.25 0.27 
Laplace-q"fT 0.13 0.11 0.09 0.18 0.09 0.12 0.12 0.09 0.09 0.76 0.37 0.44 
Mil-hbk 0.15 0.11 0.08 0.21 0.08 0.57 0.09 0.09 0.05 0.29 0.10 0.31 
Mil-hbk-TTT 0.54 0.38 0.26 0.68 0.23 0.38 0.38 0.28 0.14 0.46 0.14 0.77 
A - D  0.95 0.80 0.54 0.84 0.54 1.00 0.87 0.46 0.30 0.86 0.84 0.82 

Ten thousand replications for each intensity function. Five processes observed. 
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Table 5. Simulated actual level with various heterogeneous HPPs 

Intensities 

t 0.1 0.2 0.5 0.6 0.75 0.9 
0/2 0.25 0.4 0.625 0.7 0.75 0.9 
c~3 0.5 0.6 0.75 0.8 0.9 0.9 
0/4 0.75 0.8 0.875 0.9 1 l 
~5 1 1 I 1 1 1 
Test Actual level 

Laplace 0.049 0.051 0.050 0.050 0.050 0.048 
Laplace-TTT 0.530 0.029 0.130 0.108 0.076 0.055 
Mil-hbk 0.051 0.049 0.051 0.051 0.050 0.050 
Mil-hbk-TTT 0.095 0.015 0.087 0.073 0.058 0.053 
A - D  0.596 0.071 0.129 0.106 0.074 0.056 

Five processes. Twenty thousand replications. 

Table 6. Analysis of tractor data 

Test Test statistic P-value 

Combined Laplace 2.08 0.0372 
Laplace-TTT 5.03 0.0000 
Combined Mil-hbk 42.6 0.0026 
Mil-hbk-TTT 48.5 0.0000 
A - D  13.3 0.0000 
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