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SUMMARY & CONCLUSIONS 
 

The commonly used models for analyzing repairable 
systems data are perfect renewal processes (PRP), 
corresponding to perfect repairs, and nonhomogeneous 
Poisson processes (NHPP), corresponding to minimal repairs. 
However, most repair activities may realistically not result in 
such two extreme situations but in a complicated intermediate 
one (general repair or imperfect repair/maintenance). In this 
paper, we explore  the general renewal processes (GRP) to 
model and analyze complex repairable systems with various 
degrees of repair. A general likelihood function formulation 
for single and multiple repairable systems is presented for 
estimation of the GRP parameters. Confidence bounds based 
on the Fisher information matrix are also developed. The 
practical use of the proposed statistical inference is 
demonstrated by two examples, and the results show that our 
proposed method is a very promising and efficient approach 
with the potential of becoming very useful in industry and of 
leading to further generalization of repairable systems 
analysis.  

 
1  INTRODUCTION 

 
Repairable systems receive repair/maintenance actions 

that restore system components when they fail. These actions 
change the overall makeup of the system and affect the system 
behavior differently due to different maintenance approaches. 
Basically, there are two major categories: corrective 
maintenance or preventive maintenance. Each can be 
classified in the terms of the degree to which the operating 
condition of an item is restored by maintenance in the 
following way [1][2]: 
a) Perfect repair or maintenance: a maintenance action that 

restores the system operating condition to be “as good as 
new.”  

b) Minimal repair or maintenance: a maintenance action that 
restores the system operating state to be “as bad as old.” 

c) Imperfect repair or maintenance: a maintenance action that 
restores the system operating state to be somewhere 
between as good as new and as bad as old.  

d) Worse repair or maintenance: a maintenance action that 
makes the operating condition worse than that just prior to 
failure. 

e) Worst repair or maintenance: a maintenance action that 
makes the system fail or break down undeliberately. 

Earlier studies and results in this field usually assumed 
that the system after corrective or preventive maintenance is as 
good as new (perfect maintenance) or as bad as old (minimal 
maintenance). These two assumptions are often found very 
limited uses in practical applications. Many maintenance 
activities may realistically not result in either of these two 
extreme situations but in a complicated intermediate one. That 
is, when the system is maintained correctively or preventively, 
its failure rate is somewhere between as good as new and as 
bad as old. Imperfect maintenance is the concept that 
maintenance actions do not bring the system to an as good as 
new condition but rather bring the state of a failed system to a 
level that is somewhere between new and prior to failure.  

Recently, modeling and analysis of repairable systems 
with general repair have drawn a lot of attention in reliability 
and maintenance work. However, as Guo, Ascher and Love[3] 
noticed, too much attention is paid to the invention of new 
models, with little thought, it seems, as to their applicability. 
Too little attention is paid to data collection and considering 
the usefulness of models for solving problems through model 
fitting and validation. The scarcity of these works can be 
explained by the complexity of the likelihood function. 
Kijima[4][5] suggested two possible probabilistic models to 
address a very general assumption regarding the system repair 
condition called general renewal process.  Kijima model I 
assumes that repairs only fix the wearout and damage created 
in the last period of operation; Kijima model II assumes that 
repairs fix all of the wearout and damage accumulated up to 
the current time. Because of the mathematical complexity of 
the g-renewal equation, the closed form solution of the 
equation is not available, and even numerical solutions are 
extremely difficult to obtain. Based on Kijima and Sumita's 
work, Kaminskiy and Krivtsov[6] proposed an approximate 
solution to Kijima model I using the Monte Carlo (MC) 
simulation technique. Yanez et. al [7] combined MC 
simulation with numerical method to solve maximum 
likelihood (ML) estimation for Kijima model I. The realism of 
Kijima model I’s assumption is often questioned. In practice, 
the nth repair not only can remove the damage incurred during 
the time between the (n-1)th and nth failures, but also can fix 
the cumulative damage incurred during the time from the 1th 
failure to (n-1)th failure. On the other hand, the Monte Carlo 
approach was developed mainly for the cases where a large set 
of data is available, and the accuracy for estimation of the time 
to first failure (TTFF) distribution depends on the availability 
of such data.  It would be very difficult to obtain the large set 
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of data in many industries such as nuclear, chemical and 
petrochemical. Besides the need for large amounts of data, the 
approach is extremely time-consuming and slow in order to 
estimate the parameters [7]. 

In this paper, Kijima model II is introduced to model 
complex repairable systems, a general likelihood function 
formulation for single and multiple systems with the time 
truncated data and failure truncated data is presented for the 
estimation of the parameters. The remainder of this paper is 
organized as follows: In section 2, we provide an overview of 
the probabilistic models for repairable systems. In section 3, 
we propose a new approach and ML solution of the proposed 
approach and revisit some examples in [8] using our proposed 
method. Our conclusions and directions for future research are 
in section 4.  

 
1.1 Assumptions 

 
 TTFF distribution is known and can be estimated from the 

available data 
 The repair time is assumed to be negligible so that the 

failures can be viewed as point processes. 
 

2 BASIC ANALYSIS APPROACHES FOR REPAIRABLE 
SYSTEMS 

 
2.1 Renewal Process and Homogeneous Poisson Process  

 
If a system in service can be repaired to an as good as 

new condition following each failure, then the failure process 
is called a renewal process.  For renewal processes, the times 
between failures are independent and identically distributed.   

A special case of this is the homogeneous Poisson process 
(HPP), which has independent and exponential times between 
failures. A counting process is a homogenous Poisson process 
with parameter λ >0 if : 
• N(0)=0 
• the process has independent increments 
• the number of failures in any interval of length t is 

distributed as a Poisson distribution with parameter tλ  
There are several implications to this definition of the 

Poisson process. The distribution of the number of events in 
(t1, t2] has the Poisson distribution with parameter 2 1( )t tλ − .  
Therefore, the probability mass function is: 

2 1( )
2 1

2 1
[ ( )][ ( ) ( ) ]

!

t txt t eP N t N t n
n

λλ − −−− = =    n  =0,1,2,   (1) 

The expected number of failures by time t is 
( ) [ ( )]t E N t tλΛ = = , where λ  is often called the failure 

intensity or rate of occurrence of failure (ROCOF). The 
intensity function is therefore ( ) ( )u t t λ′= Λ = . If 1 2,X X , …, 
are independent and identically distributed exponential 
random variables, then ( )N t  corresponds to a Poisson process. 

 
2.2 Nonhomogeneous Process (NHPP) 

 
As a general class of well-developed stochastic process 

models in reliability engineering, nonhomogeneous Poisson 
process models have been successfully used in studying 
hardware reliability problems. NHPP models are especially 
useful to describe failure processes that possess certain trends, 
such as reliability growth or deterioration. The cumulative 
number of failures up to time t, N(t), can be described by a 
NHPP. For the counting process {N(t), t≥0} modeled by 
NHPP, N(t) follows a Poisson distribution with parameter 

)(tΛ . The probability that N(t) is a given integer n is 
expressed by: 

{ } ( )[ ( )]( )
!

n
ttP N t n e

n
−ΛΛ= = , n = 0,1,2,… 

Λ(t) is the mean value function.  The function Λ(t) 
describes the expected cumulative number of failure behavior. 

The underlying assumptions of the NHPP are: 
• N(0) = 0 
• {N(t),  t ≥ 0} has independent increments 
• P{N(t+h) - N(t) = 1} = u(t) + o(h) 
• P{N(t+h) - N(t) ≥ 2} = o(h) 

The probability of exactly n events occurring in the 
interval (a, b] is given by: 

( )
( )

[ ( ) ( ) ]
!

b

a

nb u t dt

a
u t dt e

P N b N a n
n

−∫ 
  − = =
∫

  for n= 0,1,….  (2) 

o(h) denotes a quantity that tends to zero for small h. The 
function u(t) is the failure intensity. Given u(t), the mean value 
function )(tΛ =E[N(t)] satisfies: 

0
( ) ( )

t
t u s dsΛ = ∫  

Inversely, knowing Λ(t), the failure intensity at time t can 
be obtained by: 

( )( ) d tu t
dt
Λ=  

One of the most common forms of the failure intensity 
used in reliability analysis of repairable systems, the Crow 
(AMSAA) model, is as follows: 

1( )u t t βλβ −=      (3) 
( )( )E N t t βλ=  

where, 
( )N t = number of observed failures in (0, )t  

)(tu = failure intensity (sometimes called the 
            “instantaneous failure rate”) 
λ, β = model parameters (λ >0, β > 0) 
 

2.2.1 Estimation for Failure Truncated Data 
In general, the process is said to be failure truncated if it 

is observed until a fixed number of failures have occurred.  It 
is said to be time truncated if it is observed for a fixed length 
of time. For an item undergoing reliability growth testing, if 
the failure process follows the Weibull process and testing 
data are truncated at the nth failure with 0<t1<t2<…<tn 
denoting the successive failure times, the likelihood function 
is: 

1
1 2

1

( , ,..., , , ) exp( )
n

n n
n n i

i

L t t t t tβ βλ β λ β λ −

=

= − ∏  
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Maximum likelihood estimates (MLE) for β and λ are: 

( )
1

1

ˆ

ln
n

n i
i

n

t t
β −

=

=
∑

    (4) 

ˆ
ˆ

n

n
t β

λ =      (5) 

 
2.2.2 Estimation for Time Truncated Data 

 
A process is said to be time truncated if it is observed for 

a fixed length of time.  Some of the estimation and inference 
procedures are quite similar to those for failure truncated data. 
For an item undergoing reliability growth testing, if the failure 
process follows a Weibull process and testing data are 
truncated at time T with 0<t1<t2<…≤T  denoting the 
successive failure times, the likelihood function is: 

1
1 2

1

( , ,..., , , ) exp( )
n

n n
n i

i

f t t t T tβ βλ β λ β λ −

=

= − ∏  

Thus, the maximum likelihood estimates of β and λ are: 

( )
1

ˆ

ln
n

i
i

n

T t
β

=

=
∑

    (6) 

ˆ
ˆ n

T β
λ =      (7) 

 
2.2.3 Estimation for Multiple System Data 

 
When the data come from multiple copies of the product, 

it is necessary to modify the calculation of  λ̂  and β̂ . 
Suppose the qth system is observed continuously from time Sq 
to time Tq (q = 1, ..., k).  Then the maximum likelihood 
estimates of λ and β are values λ̂  and β̂  given by [ 7]: 

1
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1

ˆ
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N
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N

T T S S Xβ β
β

λ
=
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− −

∑
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 (9) 

 
2.3 Generalized Renewal Process (Kijima Model I) 

 
Kijima et al. [5,6] developed an imperfect repair model by 

using the idea of the virtual age process of a repairable system. 
If the system has the virtual age 1nV y− =  immediately after the 
(n-1)th repair, the nth failure time X , is assumed to have the 
distribution function: 

1
( ) ( )Pr( | )

1 ( )n n
F X Y F yX X V y

F Y−
+ −< = =
−

 

Where ( )F X  is the distribution function of the time to 
failure of a new system.  The real age of the system is 

1

n

n i
i

S X
=

=∑ .  Let q  be the degree of the nth repair 

where 0 1q≤ ≤  and the virtual age of a new system  0 0V =  
They construct such a repair model: the nth repair cannot 
remove the damage incurred before the (n-1)th repair.  It 
reduces the additional age nX  to nqX .  Accordingly, the 
virtual age after the nth repair becomes:  

1n n nV V qX−= +  

Thus:  
1 2( )n nV q X X X= + + +  

The expected number of failures in ],0[ t  is given by a g-
renewal equation [4]: 

( )0 0
( ) ( | 0) ( ) ( | )

t
H t g h x g x x dx d

τ
τ τ τ= + −∫ ∫   (10) 

where ( )( | )
1 ( )
f t qxg x

F qx
τ +=

−
,  0, ≥xt  

Because it is impossible to obtain the closed form 
solution, Kaminskiy and Krivtsov [5] proposed an 
approximate solution to the g-renewal equation using the 
Monte Carlo simulation technique. Let a sample of 
independent and identical repairable systems be observed at 
discrete time intervals over the time period ],0[ t . An 
empirical cumulative intensity function ( )e tΛ  can be 

estimated at the end of it th interval, 1, ,i n= : 

1

1( ) ( )
k

e j i
j

t N t
k =

Λ = ∑  

Where ( )j iN t  is the number of failures of the j th system 
in [0, ]it  and k  is the number of systems at 0t = . A Monte 
Carlo generated cumulative intensity function is 

1 2( ( , , , , ), , )mc nF q tα α α τΛ . Let [ / ]t n  be the greatest integer 
less than or equal to /t n . Then the solution of 

1

[ / ]
2

1, , , 1
min ( ( ) ( ( , , , ), , ))

n

t n

e i mc n iq i

t F q t
α α

α α τ
=

 
Λ − Λ 

 
∑  provides the 

nonlinear least square estimate of  1 2, , , nα α α , and q . 

 
3 KIJIMA MODEL II AND MAXIMUM LIKELIHOOD 

ESTIMATES 
 

3.1  Model Description 
 
Consider a repairable system, observed from time 0t = . 

Denote by 1 2, ,t t  the successive failure times and let the 
times between failures be denoted by 1 2, ,x x .  Thus we have:  

1, 1, 2,i i ix t t i−= − =  
where for convenience we define 0 0t ≡ .  The sequence 

1 2, ,t t of failure times and the sequence 1 2, ,x x of 
inter-arrival times thus contain exactly the same information 
about a particular realization of the process.

RAMS 2005 178 0-7803-8824-0/05/$20.00 ©2005 IEEE



 

 
Figure 1. A Repairable System Structure 

 
Previous research assumes that the nth repair can remove 

the damage incurred only during the time between the (n-1)th 
and nth failures. In practice, not only does the nth repair 
depend on (n-1)th repair, but also it depends on all previous 
repair. We assume that the repair action could remove all 
damage accumulated up to nth failure, accordingly, the virtual 
age after the nth repair becomes: 

1( )n n nV q V x−= +  
where q  is the degree of the nth repair where 10 ≤≤ q , 
thus:  

0

1 1

2 1 2

1 2
1 2

0

( )

( )n n
n n

V
V qx
V q qx x

V q q x q x x− −

=
=
= +

= + + +

  (11) 

If the system has the virtual age 1nV y− =  immediately 
after the (n-1)th repair, the nth failure time X is distributed 
according to the following cumulative density function (cdf): 

1
( ) ( )( | )

1 ( )n
F X Y F yF X V y

F Y−
+ −= =
−

  (12) 

Obviously, q = 0 corresponds to a perfect repair (RP, as 
good as new) while q  = 1 leads to a minimal repair (NHPP, 
as bad as old). The case of 0 1q< <  corresponds to an 
imperfect repair (better –than –old –but –worse –than  –new) 
while 1q >  leads to worse or worst repair (worse than old). 
The case of 0q <  suggested a system restored to a condition 
of better than new. Physically speaking, therefore, q can be an 
index for repair effectiveness 

 
3.2 Maximum Likelihood Estimation of the Parameters 

 
The Monte Carlo approach proposed by Kaminskiy and 

Kivtsov provides a simulation method for statistical estimation 
of the GRP, and it has been used in the automotive industry 
[6]. However, this approach needs to estimate the distribution 
of the TTFF from a large amount of data and it will take a 
very long time to estimate the parameters. For these reasons, 
using MLE to estimate the GRP parameters is preferable.  

 
3.2.1 Single Repairable System   

 
A maximum likelihood estimation method is possible for 

cases in which there is reasonably enough data available. Let 

nttt ,,, 21  be the inter-arrival time between failure 1−i  
and i , assuming a Weibull distribution for TTFF, the nth 
failure time it is distributed according to the following cdf: 

1 1

1
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1
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1 ( )

1

i i i

i

i i i

i i i
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v
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e e
e

e
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λ

λ

− −

−

− −
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− −

−

− − +

−
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+ −= =
−

−=
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  (13) 

Thus the conditional probability distribution function 
(pdf) of it  is: 

1 1 1

1
1 1 1

( | , , , ) ( | )

( ) exp[ [( ) ]]
i i i i i

i i i i i

f t t t t f t t

x v x v vβ β βλβ λ
− −

−
− − −

=

= + − + −
 

Where 1−> ii tt  
The corresponding likelihood is: 
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1 2 1 1
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1

1
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[ ] [( ) i in n n i
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n
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Where 
0 If the test is failure truncated
1 If the test is time truncated

δ 
= 


 

Taking the natural log on both sides: 

1 1 1
1 1

log {data| , ,q} (ln ln )
[( ) ]

[( ) ] ( 1) ln( )]

n n n
n n

i i i i i
i i
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T t v v

x v v x v

β β

β β

λ β λ β
λδ
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= =

= +

− − + −

− + − + − +∑ ∑

(15) 

Where iv  can be obtained by Eqn. (11). 
 

3.2.2 Multiple Systems 
 
Suppose there are k systems: 

, , ,

, , 1 , 1

,1 ,2 ,1 , , 1
1

[( ) ]

[( ) ]1 1
, , 1
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δ
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−
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Where: 
0 If the test is failure truncated
1 If the test is time truncated

δ


= 
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Taking the natural log on both sides: 

,
1 1

, , 1 , 1 , , 1
1 1 1 1

log (ln ln ) [ ) ]

[( ) ] ( 1) ln( )

l l l

l l

k k

l l l n n n
l l

n nk k

l i l i l i l i l i
l i l i

L n T t v v

x v v x v

β β

β β

λ β λδ

λ β

= =
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= = = =
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∑ ∑

∑∑ ∑∑
(16) 

There are three parameters ( , andq λ β ) that need to be 
estimated. However, there is no closed form mathematical 
solution. A numerical algorithm has been developed to solve 
both the single repairable system and the multiple repairable 
systems. 

 
3.2.3 Grouped Data 

 
The grouped data type is used for tests where the exact 

failure times are unknown and only the number of failures 
within a time interval is known (e.g. inspection data). As an 

x

t
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example, this data type would be applicable when multiple 
units are run and the test units are inspected after 
predetermined time intervals and the number of failed units is 
recorded. The failed units are then subsequently repaired and 
put back into the test or removed.  

The likelihood function is as follows: 

1 1( ( ) )
1 1

1

{d ata | , , q} =

( ( ) )
!

i i i in x v vk
i i i

i i

L

x v v e
n

β βλ λβ β

λ β

λ λ − −− + −
− −

=

+ −∏
 

Taking the natural log on both sides: 

1 1 1 1
1

Log ln( ( ) ) ( ( ) ) ln !
k

i i i i i i i i
i

L n x v v x v v nβ ββ βλ λ λ λ− − − −
=

 = + − − + − − ∑ (17) 

In order to estimate the unknown parameters, we use a 
numerical method to maximize the log likelihood function like 
the single repairable system and the multiple repairable 
systems. 

 
3.2.4 The Algorithm 

 
Several algorithms have been used in the past for the 

maximization of the log-likelihood function such as the 
Newton search, genetic algorithms, annealing method, etc.  
The problem was approached with a form of the Newton 
search method, which is closely related to the Quasi-Newton 
method. This method was chosen because it is versatile, 
reliable, and provides quick convergence.  The method 
maximizes the log-likelihood function (eq. (15), eq. (16) or eq. 
(7)) by taking Newton steps in order to bring its partial 
derivatives to zero.  The full Newton step is always 
performed, since a quadratic convergence can be achieved 
once near the solution.  At each iteration a check is performed 
to determine if the proposed step reduces the log-likelihood 
function.  If not, a backtrack along the Newton direction is 
performed until an acceptable step is achieved.  As in every 
optimization algorithm, the initial guesses for the parameters 
are very crucial. For this reason, much of the research focused 
in obtaining them.  The initial guesses are obtained from the 
supplied data, thus increasing the probability of convergence 
to a global minimum (if it exists), and decreasing the number 
of iterations. For more detail see [9] 

 
3.2.5 Confidence Bounds  

 
Maximum likelihood estimation also permits the 

determination of s-confidence intervals for the unknown 
parameters and some metrics. The confidence bounds on the 
parameters and a number of other quantities, such as the 
reliability and the percentile, can be obtained based on the 
asymptotic theory for maximum likelihood estimates, most 
commonly referred to as the Fisher matrix bounds.  The 
variance/covariance matrix of MLE of the parameters is 
obtained by taking the inverse of the Fisher matrix: 
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( , ) . . . . ( )1

2 2 2
. . .

2
1 2 11

2 2
.

2
1 2 2
. . .
. . .
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2

1

Var Cov Cov m
Cov Var

Cov Varm m

m

m m

θ θ θ θ θ

θ θ θ

θ θ θ

θ θ θ θθ

θ θ θ
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 
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 
 
  
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 
 ∂ Λ ∂ Λ
 ∂ ∂ ∂   

∑

1−

(18) 

Using the delta method, the asymptotic variance of other 
metrics (for example, failure intensity) is given by 

ˆ ˆ'AV D D= ∑ , Where D̂  is the column vector of the 
partial derivatives of other metrics with respect to the 
parameters evaluated at the estimated parameters.  

 
3.3 Example 1 

 
To illustrate the general application of this model, 

consider a system tested for T=395.2 hours with the 56 failure 
times given in Table 1. The first failure was recorded at .7 
hours into the test, the second failure was recorded 3 hours 
later at 3.7. The last failure occurred at 395.2 hours into the 
test and the system was removed from the test.  
 

Table 1.  Failure Data for a Repairable System [8] 
 

0. 63. 125 244 315 366
3. 72. 133 249 317 373 
1 99. 151 250 320 379
1 99. 163 260 324 389 
1 100 164 263 324 394
2 102 174 273 342 395
4 112 177 274 350  
5 112 191 282 355  
5 120 192 285 364  
5 121 213 304 364  

This failure data are failure truncated. Based on this data 
set, different ML estimates of λ, β and repair degree q  can be 
calculated corresponding to different model assumptions. The 
results of the ML estimates are shown in Table 2.  For the RP 
column, we assume the repair activities are perfect repairs and 
the failure intensity is as good as new. Thus, we can obtain the 
λ, β estimates and LKV  using Weibull++ 6. For the NHPP 
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column, we assume that the  repair actions restore the system 
operating state to be as bad as old. Therefore λ and β can be 
estimated by Eqns. (4) and (5). RGA 6 provides an excellent 
tool to analyze this type of repairable system. For the GRP 
(Kijima I) and  GRP (Kijima II) columns, we use MLE to obtain 
λ, β and q  estimates using this paper’s models. The coming 
Weibull++ 7 software will include these models.  From Table 
2, we notice that the NHPP model and Kijima I ‘s results are 
the same for this particular data set.  

Table 2.  Analysis Results Comparison 
 

 RP(Weibull)  NHPP(RG) GRP (Kijima I) GRP 

λ̂ 0.1469 0.206 0.2061 0.89442

β̂ 0.9846 0.937 0.9372 0.24725

q̂ 0.0 1.0 1.0 0.93156

LK-165.41533 -165.30626 -165.30626 -165.247296 

 
From Table 2, based on LKV, the GRP (Kijima II) is the 

best fit for this data set. Figure 2 shows the cumulative number 
of failures and their 90% two-sided confidence bounds based 
on the Kijima II model. Cumulative number of failures 
depends on the virtual time.  
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Figure 2. Cumulative Number of Failures and  Two-Sided 
90% Confidence Bounds 

 
3.4 Example 2 

 
Suppose K = 6 systems are observed during [0, iT ], 

1, ,i k= L . That is, the data are time truncated with 1 8760T = , 

2 5000T = , 3 6200T = , 4 1300T = , 5 2650T =  and 5 500T = . 
Failure data are given in Table 3.  

Table 3.  Failure Data for Repairable Systems 

 System 
1 

System 
2 

System 
3 

System 
4 

System 
5 

System 
6 

Start 0 0 0 0 0 0 

End  8760 5000 6200 1300 2650 500 

1 2227.08 772.9542 900.9855 411.407 688.897 105.824 

2 2733.229 1034.458 1289.95 1122.74 915.101  

3 3524.214 3011.114 2689.878    

4 5568.634 3121.458 3928.824    

5 5886.165 3624.158 4328.317    

6 5946.301 3758.296 4704.24    

7 6018.219    5052.586    

8 7202.724  5473.171    
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Figure 3. Cumulative Number of Failures vs Time 

 
Table 4.  Analysis Results Comparison 

 RP(We NHPP(RG) GRP (Kijima I) GRP 

λ̂ 0.0004 0.000 0.00018 0.000068

β̂ 1.1409 1.113 1.23863 1.358201

q̂ 0.0 1.0 0.10599 0.552159

LK-210.43657 -210.57793 -210.30652 -209.95711 

 
This failure data set is from multiple repairable systems. 

We can estimate λ, β, q  and the cumulative number of 
failures utilizing the data from all six systems in Table 3. 
Table 4 shows the results of ML estimates based on different 
models .   

From Table 4, based on LKV, the GRP (Kijima II) is the 
best fit for this data set. Figure 3 shows the cumulative number 
of failures based on all four models. We can see that the 
Kijima II model fits these multiple repairable systems very 
well and provides very  promising  results.  
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4 CONCLUSION  

In this paper, we explored the general renewal processes 
based on the Weibull distribution for representing the 
reliability of complex repairable systems. The emphasis has 
been on solving problems with different types of data through 
model fitting and validation. An systematic MLE method is 
proposed for the parameters of the GRP, by assuming values 
of the repair effectiveness parameter of 0 and 1, the traditional 
ML estimators for NHPP and PRP can be obtained. Examples 
and procedures specifically illustrating these methods were 
given for two real world situations. In addition to maximum 
likelihood estimation methods, confidence interval procedures 
were discussed and illustrated by numerical examples.  The 
proposed method provides excellent predictions with the 
potential of becoming very useful in practice and of leading to 
further generalization of repairable systems analysis.  
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