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SUMMARY & CONCLUSIONS

The commonly used models for analyzing repairable
systems data are perfect remewal processes (PRP),
corresponding to perfect repairs, and nronhomogeneous
Poisson processes (NHPP), corresponding to minimal repairs.
However, most repair activities may realistically not result in
such two extreme situations but in a complicated intermediate
one (general repair or imperfect repair/maintenance). In this
paper, we explore the general renewal processes (GRP) to
model and analyze complex repairable systems with various
degrees of repair. A general likelihood function formulation
for single and multiple repairable systems is presented for
estimation of the GRP parameters. Confidence bounds based
on the Fisher information matrix are also developed. The
practical use of the proposed statistical inference is
demonstrated by two examples, and the results show that our
proposed method is a very promising and efficient approach
with the potential of becoming very useful in industry and of
leading to further generalization of repairable systems
analysis.

1 INTRODUCTION

Repairable systems receive repair/maintenance actions
that restore system components when they fail. These actions
change the overall makeup of the system and affect the system
behavior differently due to different maintenance approaches.
Basically, there are two major -categories: corrective
maintenance or preventive maintenance. Each can be
classified in the terms of the degree to which the operating
condition of an item is restored by maintenance in the
following way [1][2]:

a) Perfect repair or maintenance: a maintenance action that
restores the system operating condition to be “as good as
new.”

b) Minimal repair or maintenance: a maintenance action that
restores the system operating state to be “as bad as old.”

c) Imperfect repair or maintenance: a maintenance action that
restores the system operating state to be somewhere
between as good as new and as bad as old.

d) Worse repair or maintenance: a maintenance action that
makes the operating condition worse than that just prior to
failure.

e) Worst repair or maintenance: a maintenance action that
makes the system fail or break down undeliberately.
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Earlier studies and results in this field usually assumed
that the system after corrective or preventive maintenance is as
good as new (perfect maintenance) or as bad as old (minimal
maintenance). These two assumptions are often found very
limited uses in practical applications. Many maintenance
activities may realistically not result in either of these two
extreme situations but in a complicated intermediate one. That
is, when the system is maintained correctively or preventively,
its failure rate is somewhere between as good as new and as
bad as old. Imperfect maintenance is the concept that
maintenance actions do not bring the system to an as good as
new condition but rather bring the state of a failed system to a
level that is somewhere between new and prior to failure.

Recently, modeling and analysis of repairable systems
with general repair have drawn a lot of attention in reliability
and maintenance work. However, as Guo, Ascher and Love[3]
noticed, too much attention is paid to the invention of new
models, with little thought, it seems, as to their applicability.
Too little attention is paid to data collection and considering
the usefulness of models for solving problems through model
fitting and validation. The scarcity of these works can be
explained by the complexity of the likelihood function.
Kijima[4][5] suggested two possible probabilistic models to
address a very general assumption regarding the system repair
condition called general renewal process. Kijima model I
assumes that repairs only fix the wearout and damage created
in the last period of operation; Kijima model II assumes that
repairs fix all of the wearout and damage accumulated up to
the current time. Because of the mathematical complexity of
the g-renewal equation, the closed form solution of the
equation is not available, and even numerical solutions are
extremely difficult to obtain. Based on Kijima and Sumita's
work, Kaminskiy and Krivtsov[6] proposed an approximate
solution to Kijima model I using the Monte Carlo (MC)
simulation technique. Yanez et. al [7] combined MC
simulation with numerical method to solve maximum
likelihood (ML) estimation for Kijima model I. The realism of
Kijima model I’s assumption is often questioned. In practice,
the nth repair not only can remove the damage incurred during
the time between the (n-1)th and nth failures, but also can fix
the cumulative damage incurred during the time from the /th
failure to (n-1)th failure. On the other hand, the Monte Carlo
approach was developed mainly for the cases where a large set
of data is available, and the accuracy for estimation of the time
to first failure (TTFF) distribution depends on the availability
of such data. It would be very difficult to obtain the large set
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of data in many industries such as nuclear, chemical and
petrochemical. Besides the need for large amounts of data, the
approach is extremely time-consuming and slow in order to
estimate the parameters [7].

In this paper, Kijima model II is introduced to model
complex repairable systems, a general likelihood function
formulation for single and multiple systems with the time
truncated data and failure truncated data is presented for the
estimation of the parameters. The remainder of this paper is
organized as follows: In section 2, we provide an overview of
the probabilistic models for repairable systems. In section 3,
we propose a new approach and ML solution of the proposed
approach and revisit some examples in [8] using our proposed
method. Our conclusions and directions for future research are
in section 4.

1.1 Assumptions

= TTFF distribution is known and can be estimated from the
available data

= The repair time is assumed to be negligible so that the
failures can be viewed as point processes.

2 BASIC ANALYSIS APPROACHES FOR REPAIRABLE
SYSTEMS

2.1 Remnewal Process and Homogeneous Poisson Process

If a system in service can be repaired to an as good as
new condition following each failure, then the failure process
is called a renewal process. For renewal processes, the times
between failures are independent and identically distributed.

A special case of this is the homogeneous Poisson process
(HPP), which has independent and exponential times between
failures. A counting process is a homogenous Poisson process
with parameter A >0 if :

e N0)=0

e the process has independent increments

e the number of failures in any interval of length ¢ is
distributed as a Poisson distribution with parameter At

There are several implications to this definition of the
Poisson process. The distribution of the number of events in
(1, 1] has the Poisson distribution with parameter A(z, —t,).
Therefore, the probability mass function is:
[ﬂ(tz - )] et

n!

The expected number of failures by time ¢ is
A(t)=E[N(t)]=At, where A is often called the failure
intensity or rate of occurrence of failure (ROCOF). The
intensity function is therefore u(r)=A'(t)=1. If X,X,, ...,
are independent and identically distributed exponential
random variables, then N(¢) corresponds to a Poisson process.

P[N(tz)_N(tl):n]: n :051527 (1)

2.2 Nonhomogeneous Process (NHPP)

As a general class of well-developed stochastic process
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models in reliability engineering, nonhomogeneous Poisson
process models have been successfully used in studying
hardware reliability problems. NHPP models are especially
useful to describe failure processes that possess certain trends,
such as reliability growth or deterioration. The cumulative
number of failures up to time ¢, N(¢), can be described by a
NHPP. For the counting process {MN(f), 20} modeled by
NHPP, N(f) follows a Poisson distribution with parameter
A(t). The probability that N(f) is a given integer n is
expressed by:
PIN() =} :%ﬂ“ n=012,..

A(¥) is the mean value function. The function A(?)
describes the expected cumulative number of failure behavior.
The underlying assumptions of the NHPP are:

NO0)=0

{N(#), t=0} has independent increments

P{N(t+h) - N(¢) = 1} = u(¢) + o(h)

P{N(t+h) - N(t) 2 2} = o(h)

The probability of exactly n events occurring in the
interval (a, b] is given by:

[J.b ”(f)dt}” RCL

n!
o(h) denotes a quantity that tends to zero for small 4. The
function u(?) is the failure intensity. Given u(f), the mean value

function A(?)=E[N(?)] satisfies:

AW = [ u(s)ds

Inversely, knowing A(?), the failure intensity at time ¢ can
be obtained by:

P[N(b)— N(a)=n]=

for n="0,1,.... (2)

dA(?)
u(t)= o
One of the most common forms of the failure intensity
used in reliability analysis of repairable systems, the Crow
(AMSAA) model, is as follows:
u(t) = ABt"
E(N@))=At’

€)

where,
N(t) = number of observed failures in (0, 1)

u(t) = failure intensity (sometimes called the

“instantaneous failure rate”)
A, B = model parameters (A >0, B > 0)

2.2.1 Estimation for Failure Truncated Data

In general, the process is said to be failure truncated if it
is observed until a fixed number of failures have occurred. It
is said to be time truncated if it is observed for a fixed length
of time. For an item undergoing reliability growth testing, if
the failure process follows the Weibull process and testing
data are truncated at the n™ failure with 0<t,<t,<...<t,
denoting the successive failure times, the likelihood function
is:

Lty sty Ao ) = A7 B" exp(—AP)[ [ £
i=1
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Maximum likelihood estimates (MLE) for B and A are:
n

R T @)
‘ In(z,/t,)
i=§ (5)

2.2.2 Estimation for Time Truncated Data

A process is said to be time truncated if it is observed for
a fixed length of time. Some of the estimation and inference
procedures are quite similar to those for failure truncated data.
For an item undergoing reliability growth testing, if the failure
process follows a Weibull process and testing data are
truncated at time 7 with 0<¢<,<...<T  denoting the
successive failure times, the likelihood function is:

Sttty s B) = 2B exp(~AT[ [ 1
i=1

Thus, the maximum likelihood estimates of B and A are:
P n

I (6)
gln(T/ti)
i=ﬁ (7

2.2.3 Estimation for Multiple System Data

When the data come from multiple copies of the product,
it is necessary to modify the calculation of A and 3.

Suppose the g™ system is observed continuously from time S,
to time T, (g = 1, ..., k). Then the maximum likelihood

estimates of A and B are values 4 and 3 given by [ 7]:

K
A=Z—N ®)
2T =5D)
K
q:lN‘I

iZ::I(Tf 7, _Sf nS,)- 25:12211111)(@

B= )

2.3 Generalized Renewal Process (Kijima Model I)

Kijima et al. [5,6] developed an imperfect repair model by
using the idea of the virtual age process of a repairable system.
If the system has the virtual age ¥, , =y immediately after the

(n-1)th repair, the nth failure time X , is assumed to have the
distribution function:

_FX+Y)-F()
1-F(®Y)

Where F(X) is the distribution function of the time to

PH(X, <X |V, =)

where0<¢ <1 and the virtual age of a new system V,=0

They construct such a repair model: the nth repair cannot
remove the damage incurred before the (n-I)th repair. It
reduces the additional age X, to ¢X,. Accordingly, the

virtual age after the nth repair becomes:
V,=V,.+qX,
Thus:
V,=qX,+ X, +---+ X))
The expected number of failures in [0, ¢] is given by a g-
renewal equation [4]:

H(t) = jo( 2(7]0) +J-Orh(x)g(7— x| x)dx)dr (10)
where g(7|x)={_(tF—+(Zg, t,x=>20

Because it is impossible to obtain the closed form
solution, Kaminskiy and Krivtsov [5] proposed an
approximate solution to the g-renewal equation using the
Monte Carlo simulation technique. Let a sample of

independent and identical repairable systems be observed at
discrete time intervals over the time period [0, #]. An
cumulative can be

empirical intensity function A, (7)

estimated at the end of #; th interval, i=1,---,n :

AO=22N,0)

Where N,(z,) is the number of failures of the j th system
in [0, #] and k is the number of systems at +=0. A Monte
Carlo  generated cumulative intensity function is
A, (Fla,a,,, @,T), q, t).Let [t/n] be the greatest integer
t/n. Then the solution of

less than or

[t/n]
i A=A (F o, -,
i (S0 -ar

equal to
a,, 1), q, t,.))zj provides the

nonlinear least square estimate of ¢,a,,:-, «,,and ¢ .

3 KIJIMA MODEL Il AND MAXIMUM LIKELIHOOD
ESTIMATES

3.1 Model Description

Consider a repairable system, observed from time 7=0.
Denote by 1.z, --- the successive failure times and let the

times between failures be denoted by x,,x,, ---. Thus we have:
i=1, 2, -
t,=0.

t, t,, ---of failure times and the sequence x,,

X =41,
where for convenience we define The sequence
x,, ---of

inter-arrival times thus contain exactly the same information

failure of a new system. The real age of the system is about a particular  realization of the  process.
S,=> X . Let g be the degree of the nth repair

i=1
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Figure 1. A Repairable System Structure

Previous research assumes that the nth repair can remove
the damage incurred only during the time between the (n-7)th
and nth failures. In practice, not only does the nth repair
depend on (n-1)th repair, but also it depends on all previous
repair. We assume that the repair action could remove all
damage accumulated up to nth failure, accordingly, the virtual
age after the nth repair becomes:

V,=qV,. +x,)
where ¢ is the degree of the nth repair where0 < g <1,
thus:
V,=0
Vi=gx
V2 =4q(gx +x,)

(11)

", 4t x,)

V,=a(q"'x +q
If the system has the virtual age V, =y immediately
after the (n-/)th repair, the nth failure time X is distributed
according to the following cumulative density function (cdf):
F(X+Y)=F(y) (12)
1-F(Y)

Obviously, g = 0 corresponds to a perfect repair (RP, as

FXIV,,=y=

good as new) while ¢ =1 leads to a minimal repair (NHPP,

as bad as old). The case of 0<g<l1 corresponds to an
imperfect repair (better —than —old —but —worse —than —new)
while g >1 leads to worse or worst repair (worse than old).
The case of ¢<0 suggested a system restored to a condition
of better than new. Physically speaking, therefore, ¢ can be an
index for repair effectiveness

3.2 Maximum Likelihood Estimation of the Parameters

The Monte Carlo approach proposed by Kaminskiy and
Kivtsov provides a simulation method for statistical estimation
of the GRP, and it has been used in the automotive industry
[6]. However, this approach needs to estimate the distribution
of the TTFF from a large amount of data and it will take a
very long time to estimate the parameters. For these reasons,
using MLE to estimate the GRP parameters is preferable.

3.2.1 Single Repairable System

A maximum likelihood estimation method is possible for
cases in which there is reasonably enough data available. Let

£t
and i, assuming a Weibull distribution for TTFF, the nth

failure time ¢, is distributed according to the following cdf:

-,t, be the inter-arrival time between failure i—1
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Fx,+vi . )-F@.,)
1-F(v,_)

~ e% vE e*/{(xﬁ»v,,,)/) (13)

F Vi, =v,)=

e Ve

=1 = e Mt =)

Thus the conditional probability distribution function
(pdf) of t, is:

S@ s Gy s )= (6 ]12)

= AB(x; + v ) exp[=A(x +v,_) =V 1]
Where £, > 1,
The corresponding likelihood is:

Lidata 4, S, a}=/@) [, [4)- /G, |1, IRT|1,)

— 11 ﬂr [e—ﬂ[(T—t,,Jrv" )ﬁ—yf ]]5 ﬁ[(x +v )}1 ef/l[(x,--v»v,-,1 )/37\,/1 N
i i-1

i=1

(14)

0 If the test is failure truncated

Where 6 = .
1 If the test is time truncated

Taking the natural log on both sides:

log L{data|A,5,q} = n(In A +1n )

~ASU(T =1, +v,)" =v/]

“AY 1 +v )P =vE I+ (B =D In(x, +v,))]
i=1 i=1

Where v, can be obtained by Eqn. (11).

15)

3.2.2 Multiple Systems

Suppose there are k systems:

L{datald, B, a} =] f)f 16,0 f@, |, DR |,)]
=1

S5
=AU =ty +v10 ) =]
ﬂ«’7lﬁ’1/ [@ " " L
.
=11} ..
=1

H [(x,, +v, l)p-1e—l[<x/.,+w. D =Pl
i -
i=1

Where:

0 If the test is failure truncated
1 If the test is time truncated

Taking the natural log on both sides:

k k
logL="Y"n(nA+InB)-A6Y [T, —1,, +v,)’ —v/]
= = ’ (16)
k_m kon
_/IZZ[(XU +Vl,171)ﬂ _Vzﬁq]*’(ﬂ_l)zzhl(x/,f +V1,H)
1=l i=1 =1 i=1
There are three parameters (¢, 4 and £) that need to be
estimated. However, there is no closed form mathematical
solution. A numerical algorithm has been developed to solve
both the single repairable system and the multiple repairable
systems.

3.2.3 Grouped Data
The grouped data type is used for tests where the exact

failure times are unknown and only the number of failures
within a time interval is known (e.g. inspection data). As an
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example, this data type would be applicable when multiple
units are run and the test units are inspected after
predetermined time intervals and the number of failed units is
recorded. The failed units are then subsequently repaired and
put back into the test or removed.

The likelihood function is as follows:

L{datalA, B, q}=
ﬁ (A(x, + v, )ﬂ _ /1",-71!;)"’ e—u(x,w,,.)”—ﬂv,,.”)

i=1 }’l!

i

Taking the natural log on both sides:
Log L= Zk:[n,. In(A(x, +v,) = v, )= (Ax +v,_ )’ — v ") -Inn, !J (17)

In order to estimate the unknown parameters, we use a
numerical method to maximize the log likelihood function like
the single repairable system and the multiple repairable
systems.

3.2.4 The Algorithm

Several algorithms have been used in the past for the
maximization of the log-likelihood function such as the
Newton search, genetic algorithms, annealing method, etc.
The problem was approached with a form of the Newton
search method, which is closely related to the Quasi-Newton
method. This method was chosen because it is versatile,
reliable, and provides quick convergence. The method
maximizes the log-likelihood function (eq. (15), eq. (16) or eq.
(7)) by taking Newton steps in order to bring its partial
derivatives to zero. The full Newton step is always
performed, since a quadratic convergence can be achieved
once near the solution. At each iteration a check is performed
to determine if the proposed step reduces the log-likelihood
function. If not, a backtrack along the Newton direction is
performed until an acceptable step is achieved. As in every
optimization algorithm, the initial guesses for the parameters
are very crucial. For this reason, much of the research focused
in obtaining them. The initial guesses are obtained from the
supplied data, thus increasing the probability of convergence
to a global minimum (if it exists), and decreasing the number
of iterations. For more detail see [9]

3.2.5 Confidence Bounds

Maximum likelihood estimation also permits the
determination of s-confidence intervals for the unknown
parameters and some metrics. The confidence bounds on the
parameters and a number of other quantities, such as the
reliability and the percentile, can be obtained based on the
asymptotic theory for maximum likelihood estimates, most
commonly referred to as the Fisher matrix bounds. The
variance/covariance matrix of MLE of the parameters is
obtained by taking the inverse of the Fisher matrix:
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I fag) (G.6,) Cov(ﬁlﬁmﬂ
an8.6,) Vat6) .
Z =
04.5,) V) |
8912 3G90, G0

(18)
PA

_| 9498 307

PA

PA
26 2
L m |

Using the delta method, the asymptotic variance of other
metrics (for example, failure intensity) is given by

AV =D 'Zb , Where D is the column vector of the

partial derivatives of other metrics with respect to the
parameters evaluated at the estimated parameters.

PA

0806
1" m

3.3 Example 1

To illustrate the general application of this model,
consider a system tested for T=395.2 hours with the 56 failure
times given in Table 1. The first failure was recorded at .7
hours into the test, the second failure was recorded 3 hours
later at 3.7. The last failure occurred at 395.2 hours into the
test and the system was removed from the test.

Table 1. Failure Data for a Repairable System [8]

0. 63. 125 244 315 366
3. 72. 133 249 317 373
1 99. 151 250 320 379
1 99. 163 260 324 389
1 100 164 263 324 394
2 102 174 273 342 395
4 112 177 274 350
5 112 191 282 355
5 120 192 285 364
5 121 213 304 364

This failure data are failure truncated. Based on this data
set, different ML estimates of A, B and repair degree g can be
calculated corresponding to different model assumptions. The
results of the ML estimates are shown in Table 2. For the RP
column, we assume the repair activities are perfect repairs and
the failure intensity is as good as new. Thus, we can obtain the
A, B estimates and LKV using Weibull++ 6. For the NHPP
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column, we assume that the repair actions restore the system

Table 3. Failure Data for Repairable Systems

operating state to be as bad as old. Therefore A and 3 can be
. . System | System System | System | System [ System
estimated by Eqns. (4) and (5). RGA 6 provides an excellent 1 2 3 4 5 6
tool to analyze this type of repairable system. For the GRP Start 0 0 0 0 0 0
(Kijima T) and GRP (Kijima 1) columns, we use MLE to obtain End 8760 5000 6200 1300 2650 500
A, Band ¢ estimates using this paper’s models. The coming 1 [2227.08 [772.9542 [900.9855 [411.407 |688.897 |105.824
Weibull++ 7 software will include these models. From Table 2 £733.229 [1034.458 [1289.95 [1122.74 [915.101
2, we notice that the NHPP model and Kijima I ‘s results are 3 B3524212 BOI1.114 12689.873
the same for this particular data set. T F365632 Biaia5s [393ssea
Table 2. Analysis Results Comparison > P886.165 pe24.158 14328317
6 [5946.301 [3758.296 [4704.24
RP(Weibull) |NHPP(RG) [GRP (Kijima I) GRP 7 6018.219 5052.586
i 0.1469 0.206 0.2061 0.89442 8 [7202.724 5473.171
p 0.9846 0.937 0.9372 0.24725
IB Cumulative Number of Failures vs Time
C} 00 10 10 093156 10.34 — Kijima II Model
— N vodel
L| -165.41533 -165.30626 | -165.30626 -165.247296 T Kifima I Model
L]
79 /
From Table 2, based on LKV, the GRP (Kijima II) is the 828 o
best fit for this data set. Figure 2 shows the cumulative number s
of failures and their 90% two-sided confidence bounds based
on the Kijima II model. Cumulative number of failures 8 6ot
depends on the virtual time. £
5
Cumulative Number of Failures vs Time ‘g Y
72.699 /| — Kijima 11 Model = 4.14
— Upper Bound g T
— Lower Bound %
g
3 .
58.23% y - /e
/ /.A () .o
% : "
/ ° o/
4] - o /‘V
é 43.77% ..‘ o
£ . * 00%%s00 1787040 3530280 5273520 7016760  8760.000
S e Time
@ g . . . .
E y :° Figure 3. Cumulative Number of Failures vs Time
T 29305 o >
g Table 4. Analysis Results Comparison
= s RP(We |[NHPP(RG) |GRP (Kijima I) GRP
7 s
14.84F :.) i 0.0004 0.000 0.00018 0.000068
p, & ﬁ 1.1409 1.113 1.23863 1.358201
y,
037 $ c} 0.0 1.0 0.10599 0.552159
0.700 79.600 158.500Time 237.400 316.300 395.200 L 210.43657 210.57793 21030652 209.95711

Figure 2. Cumulative Number of Failures and Two-Sided
90% Confidence Bounds

3.4 Example 2

Suppose K = 6 systems are observed during [0, T;],
i=1;--,k . That is, the data are time truncated with 7, =8760,
T, =5000, T, =6200, 7, =1300, 7, =2650 and T; =500.
Failure data are given in Table 3.
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This failure data set is from multiple repairable systems.
We can estimate A, [, ¢ and the cumulative number of

failures utilizing the data from all six systems in Table 3.
Table 4 shows the results of ML estimates based on different
models .

From Table 4, based on LKV, the GRP (Kijima II) is the
best fit for this data set. Figure 3 shows the cumulative number
of failures based on all four models. We can see that the
Kijima II model fits these multiple repairable systems very
well and provides very promising results.
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4 CONCLUSION

In this paper, we explored the general renewal processes
based on the Weibull distribution for representing the
reliability of complex repairable systems. The emphasis has
been on solving problems with different types of data through
model fitting and validation. An systematic MLE method is
proposed for the parameters of the GRP, by assuming values
of the repair effectiveness parameter of 0 and 1, the traditional
ML estimators for NHPP and PRP can be obtained. Examples
and procedures specifically illustrating these methods were
given for two real world situations. In addition to maximum
likelihood estimation methods, confidence interval procedures
were discussed and illustrated by numerical examples. The
proposed method provides excellent predictions with the
potential of becoming very useful in practice and of leading to
further generalization of repairable systems analysis.
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