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Abstract

It is a common situation that the failure rate function has a bathtub shape for many mechanical and electronic components. A simple model
based on adding two Burr XII distributions is presented for modeling this type data. The graphical estimation on probability paper is
illustrated, and examples of its usage are presented. The Akaike Information Criterion was used for judging the adequacy of the models
presented for the numerical examples. It can be seen that the proposed model is a very competitive model for describing the bathtub-shaped
failure rate lifetime data. © 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The probability distribution of the time-to-failure of a
device can be characterized by the failure rate, h(f) =
f(®/R(t), where f(r) denotes the density function and R(f)
the reliability function which is also called the survivorship
function. The quantity A(f) represents the probability that a
device of age r will fail in the small interval of time 7 to ¢ +
dt, which is also called the hazard function. It is a common
situation that the failure rate function has a bathtub shape for
many mechanical and electronic components. Models which
allow only monotone failure rates might not be appropriate or
adequate for modeling the whole bathtub-shaped data.

Several models have been proposed to model the bathtub-
shaped failure rates; see Refs. [1-5] and they are summar-
ized in Table 1.

Among them, a variety of methods for estimation and
testing based on general principles such as method of
moments, least squares, and maximum likelihood have
been examined and discussed for these models. However,
most models are not practical to be used by reliability engi-
neers. In order to identify the type of hazard rate of a life-
time data, many approaches have been proposed. Glaser [6]
has obtained sufficient conditions to ensure whether a life-
time model has a bathtub failure rate or not. He also reported
that the corresponding mixture based on Weibull densities is
not bathtub-shaped. In this study, a graphical method based
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on total time on test (TTT) transform introduced by Barlow
and Campo [7] and further extended by Bergman and
Klefsjo [8] will be used to illustrate the variety of hazard-
rate shapes. It has been shown that the hazard function of
F(t) increases (decreases) if the scaled TT'li—ltransform,
¢p() = Hy'(tyHE'(1), where Hp'(= [{  Rudu,
0 =< u = 1, is concave (convex). In addition, for a distribu-
tion with bathtub (unimodal) failure rate the TTT-transform
is first convex (concave) and then concave (convex).

The parameters of the model by Haupt and Schabe [3] and
the additive Weibull model by Xie and Lai [5] can be esti-
mated by the probability plotting techniques. It is the inten-
tion to study another practical model for the bathtub-shaped
failure rate function. Burr (1942) constructed the Burr
system of distributions for the expressed purposed of fitting
the cumulative density function to a diversity of frequency
data forms. The Burr has already been used in a variety of
non-reliability applications such as quality control, accep-
tance sampling and medical study. Zimmer et al. [9]
discussed the Burr XII distribution in reliability analysis
and provided a useful model for representing failure data.
This model is very flexible in modeling various types of
lifetime distribution. The reliability and the failure rate
function of the three-parameter model are given by

R(?) t,s,¢c,k >0 (1)

1
T+ W)

_ ke(tls) !
h(t) = TE @ t,s,¢,k >0 2
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Table 1
Some models for a bathtub-shaped failure rate

Author Reliability function and hazard function

Characteristics

: -2
Hjorth [1] R(t)=1-F() = — :

h(t) = ot + T A

Haupt and Schabe [3]

20A(1 + B—A)

Mudholkar and Srirastava [4]
af(1 — A" Ao !

e TV

Xie and Lai [5]

——, t =0
(1+ P’

RO=1+B—-JB+0+2B)/t 0=t=t,
h(t) = i, 0 =1 = 1y, where A =/ + (1 + 2P)tlt,

Rt)=1-[1—exp(—t/ %, 1 =0

,t =0 where A = exp(—t/o)*

R(t) = exp(—(at)’ = (), 1= 0,b>1,d <1
h(t) = ab(an)’ ™" + cd(cty! ™, 1 =0

6 = 0 — Weibull distribution

=B=0—

exponential distribution

8 = 0 — decreasing failure rate
5= 6B—

increasing failure rate

0 < 8 < 6B — bathtub curve

B=-13—

increasing failure rate

B = 1 — increasing failure rate
—1/3 < B < 1 — bathtub curve

6 = 1 — Weibull distribution

a=60=0—

exponential distribution
a,f<1—

decreasing failure rate
af>1—

increasing failure rate
a>1,0<1—

bathtub curve or increasing
a<l,0>1—

unimodal or decreasing

Bathtub curve

It can be seen that when ¢ < 1, the failure rate
function decreases, and when c¢ > 2, the failure rate
function reaches a maximum, and then decreases.
The ranges of values where the hazard increases can
be manipulated using s. Thus, the Burr can represent
an increasing, decreasing, unimodal, or essentially
constant hazard rate in specified ranges. In this
paper, we propose a simple model, which is based
on adding two Burr XII distributions. The model is
an additive one in the sense that the failure rate func-
tion is expressed as the sum of two failure rate func-
tions of the Burr XII form. The graphical approach on
probability paper is illustrated for parameter estima-
tion. Some examples are used to demonstrate the
applicability of this additive model.

2. The additive Burr XII model

The additive Burr XII model combines two Burr XII
distributions; one has a decreasing failure rate and another
has an increasing failure rate. Thus, the hazard function for
the additive Burr XII is given by

kyco(tls)) !
s[1 + (ts,)2]° 3)

t,kl,kz,sl,S2 = 0,0 < Cy < 1,C2 >2

kyey (s !

o = 1L+ (s

Then, the cumulative hazard function can be obtained as
1
H@) = J h(u)du = ki In[1 + (¢/s))'] + ky In[1 + (¢/5,)?]
0
4

Based on this form of cumulative hazard function, the
reliability function is given by

R(@) =exp{ — H®)} =exp{ — k; In[1 + (t/s))"]

— Kk In[1 + (ts)]), t=0 5)

The corresponding lifetime distribution function is then
given by

F®)=1—-R@) =1 — exp{ — k, In[1 + (t/s,)"]

—ky In[1 + (ts)]},  t=0  (6)

Some plots using the hazard function are displayed in Fig. 1.
It can be seen that this failure function has a bathtub-shaped
curve.

The physical background of this model is clear. A compo-
nent fails because of the occurrence of a failure mode and
usually there are different failure modes associated with a
component. Each failure mode affects the component in a
different way. Suppose that the component is affected by
two major failure modes. Thus, the above model represents
that the component can fail due to either of these two failure
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Fig. 1. Some typical bathtub-shaped failure rate function using different values of the parameters.
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modes. For a component that has a bathtub-shaped failure
rate, the initial failures are usually caused by design faults
and initial problems, which lead to a decreasing failure rate.
Material fatigue or component aging usually causes the last
part of the bathtub-shaped failure rate and this corresponds
to an increasing failure rate. This model incorporates both
types of failures and it can be used to analyze this kind of
failure data collected without knowing what types of failure
have occurred.

One of the uses of a bathtub curve is that we can deter-
mine the optimum burn-in time in the case when the initial
failure rates is too high for the product to be released
directly after production. Also, after a certain time, the
product enters the wear-out phase and replacement should
be considered. The decision can easily be made based on the
model. For example, the product can only be released after
burn-in when the failure rate is less than 4, to meet custo-
mers’ requirement, then the optimum burn-in time can be
determined by h(f) = hy,. Similarly, if the product has to be
replaced by a new one when the failure rate is too high,
higher than #,, then the optimum replacement time can be
determined by solving the following equation h(f) = h,.
Both equations can be solved numerically using standard
algorithms. In addition, the hazard plot can be used to deter-
mine the optimum burn-in time or the optimum replacement
time.

3. Probability plotting procedure

Probability plotting is a graphical method used to inves-
tigate whether an assumed model adequately fits a set of
data. It helps the analyst to assess how well a given theore-
tical distribution fits the data and to estimate distribution
parameters through least squares (LS) procedure. Plotting
the data values against the corresponding estimated quantile
values, where the scale is adjusted so that the relationship is
linear for a given theoretical distribution, produces a prob-
ability plot. Thus, a linear pattern of points indicates agree-
ment between the data distribution and the theoretical
distribution; a non-linear pattern indicates that the assumed
distribution is not a reasonable representation of the data. If
one can take the log-transformation of both sides in Eq. (1),
the Burr quantile function becomes

In([R(t,)]""* = 1) = ¢ In(t,) — ¢ In(s) )

Thus, the empirical value of ln([R(tp)]fllk — 1) is plotted
versus the ordered log-transformed data values. Here, R(z,)
is estimated by Herd—Johnson procedure, that is

’
N an—r+1
R t = -

(1) g n—r+2
where n is the number of units on test, » the order of each
failure after order numbers have been assigned to all units

based on their running times, and f the observed number of

failures. In the case of complete data, the Herd—Johnson
estimate is identical to the maximum likelihood (ML) esti-
mation order-statistic, i/(n + 1). If k is unknown, it may be
necessary to construct plots for a series of k values to obtain
a linear pattern. If the plot when k = 1 is concave down,
then smaller values for & tend to linearize the plot; if the plot
when k = 1 is concave up, then larger values of k tend to
linearize the plot. It is because of this concave—convex
relationship of the plots in terms of k that we recommend
that the analyst begin by fixing k first and then uses the
linear plots to estimate ¢ and s. Such estimates are easily
obtained using spreadsheets. Since the model is based on
two Burr XII distributions, the parameter estimation can be
obtained by the following steps.

Step 1. Using the first few ordered lifetime data, plot the
empirical value of ln([R(t,,)]_”k — 1) versus the ordered
log-transformed data values to find the best fitting straight
line, using LS, therefore, the parameter k; can be obtained.
Then use the linear plot to estimate ¢; and s;.

Step 2. Using the last few ordered lifetime data, plot the
empirical value of ln([R(tp)]_l/k — 1) versus the ordered
log-transformed data values to find the best fitting straight
line, using LS, therefore, the parameter k, can be obtained.
Then use the linear plot to estimate ¢, and s,.

4. Examples

In order to demonstrate the proposed methodology, one
example from literature and one real-world data are used.
Through the use of graphical displays, the intent is that the
reader can gain a perspective of the various meanings and
associated interpretations. In addition, the Akaike Informa-
tion Criterion (AIC) by Akaike [10] can be used to select the
best model among several models. The AIC is given as
follows:

AIC = —2 X log(maximum log likelihood)
+ 2 X (number of parameters fitted) (8)

The best model for the data as determined by the AIC is the
model with the lowest AIC value. The log likelihood func-
tion from n independent subjects in which ¢; and c; represent
the failure time data and the censoring times of the ith unit,
respectively, i = 1,2, ...,n, can be found in Cox and Oakes
[11]. Then this function is given by

£(0O;1 = Z

uncensored observations

log h(x;; @) + Z log R(x;; ©®)

C)

where x; = min(z;, ¢;) and O is the set of parameters of the
model.

Example 1. Table 2 contains the times to failure of 50
devices by Aarset [12]; the TTT plot indicates a bathtub-
shaped hazard rate in Fig. 2. Let us denote the failure times
by ti,f,...,t59p and assume that f <t <. <lfsq.
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Table 2
Lifetimes of 50 devices (Aarset [10])
0.1 0.2 1 1 1 1 1 2 3 6 7 11 12 18 18 18 18 18 21 32 36
40 45 46 47 50 55 60 63 63 67 67 67 67 72 75 79 82 8 8 8 84
84 85 85 85 85 85 86 86
Table 3 . . . .
The estimated parameters and AIC values in Table 2 versus (n + 1)t;/i, we can find an approximate a straight line
with intercept a = 2B¢,/(1 +283) = 19.889 and slope
Model Estimated parameters AIC  Rank tan(¢) = /(1 + 28) = 108.29. This gives t, = 128.179
The exponentiated Weibull a =4.69, 6=0.146 and 74841 4 and = 0.09. Using the additive-Weibull model by Xie
o= 91.023 and Lai [5], a Weibull plot based on the first fifteen points
gives an estimate of the slope as 0.4996, which indeed
Haupt and Schabe to=128.179 and B = 0.09 470.52 2 . . L.
corresponds to a decreasing failure rate at the beginning.
The additive Weibull a=0,b=30.069, c= 532.89 3 The estimated slope for the last 10 points is 30.069, which
0.0912 and & = 0.4996, corresponds to an increasing failure rate. The overall para-
The additive Burr XII ¢; = 0.5067, s; = 44463 1 meter estimation is given by a = 0, b = 30.069, ¢ = 0.0912
2137.215, ky = 5.5, ¢, = and d = 0.4996. Using the proposed new model, a Burr plot
152.93, s, = 85.2526 and based on the first 15 points gives an estimate of the slope as
ky =05, 0.5067 and the intercept as —3.885, which indeed corre-
sponds to a decreasing failure rate at the beginning. The
estimated slope for the last 10 points is 152.93 and the
Muldholkar and Srivastava [4] analyzed this data using an intercept as —674.39, which corresponds to an increasing
exponentiated-Wiebull model. The parameter estimation by failure rate. The overall parameter estimation is given by
maximum likelihood method is obtained by a = 4.69, 6 = c; = 0.5067, s; = 2137.215, ky = 5.5, ¢, = 152.93, 5, =
0.146 and o = 91.023. The mean time to failure is 38.4. 85.2526 and k, = 0.5. Furthermore, the estimated para-
Using the model by Haupt and Schabe [3], plotting i/(n + 1) meters and AIC values by several models are listed in
Table 4
Time to failure of 18 electronic devices
5 11 21 31 46 75 98 122 145 165 196 224 245 293 321 330 350 420
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Fig. 2. TTT plot on the 50 observations in Table 2.
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Fig. 3. The hazard function plot based on different models in Table 2.

Table 3. The result indicates that an additive Burr XII model
has the lowest AIC value, and is the model chosen. The
corresponding hazard plots by different models are given
in Fig. 3. It can be seen that an additive Burr XII model is
a very competitive model for describing the bathtub-shaped
failure rate lifetime data.

Example 2. Table 4 represents the lifetime failure

data of an electronic device. The TTT plot indicates a bath-
tub-shaped hazard rate in Fig. 4. Using the model by Haupt and
Schabe [3], plotting i/(n + 1) versus (n + 1)t;/i, we can find an
approximate straight line with intercept & = 28z,/(1 + 28) =
91.105 and slope tan(¢) = #o/(1 + 23) = 389.94. This gives
to = 481.05 and B =0.12. Using the additive-Weibull
model by Xie and Lai [5], a Weibull plot based on the
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Fig. 4. TTT plot based on the 18 observations in Table 4.
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Fig. 5. The hazard function plot based on different models in Table 4.

first six points gives an estimate of the slope as 0.7266,
which indeed corresponds to a decreasing failure rate at
the beginning. The estimated slope for the last five points
is 2.2589, which corresponds to an increasing failure rate.
The overall parameter estimation is given by a = 0, b =
2.2589, ¢ = 0.0183 and d = 0.7266. Using the proposed
new model, a Burr plot based on the first six points gives
an estimate of the slope as 0.961 and the intercept as
—3.1024, which indeed corresponds to a decreasing failure
rate at the beginning. The estimated slope for the last five
points is 2.5012 and the intercept as —16.136, which
corresponds to an increasing failure rate. The overall para-
meter estimation is given by c¢; = 0.961, s; = 25.2368,
ki =0.28, ¢, =2.5012 s, =633.5275 and k, = 10.
Furthermore, the estimated parameters and AIC values
by several models are listed in Table 5. The result indicates
that an additive Burr XII model has the lowest AIC value,
and is the model chosen. The corresponding hazard plots by
different models are given in Fig. 5. It can be seen that the
model by Xie and Lai [5] cannot be fitted with this data for
describing the bathtub-shaped failure rate. However, the

Table 5
The estimated parameters and AIC values in Table 4

Model Estimated parameters AIC Rank

Haupt and Schabe to =481.05 and B; = 0.12, 221.77 2

The additive Weibull a=0,b=22589, c= 24705 3
0.0183 and d = 0.7266

The additive Burr XII ~ ¢; = 0.961, s; = 25.2368, 219.22 1

ki = 0.28, ¢, = 2.5012,
5, = 633.5275 and k, = 10

model by Haupt and Schabe [3] and the proposed model
can describe the bathtub-shaped failure rate for this lifetime
data.

5. Conclusion

In this paper, an additive model based on the Burr XII
distribution for lifetime data with bathtub-shaped failure
rate was presented. The application of the model is
straightforward. The parameter estimation can be estimated
by the simple probability plot technique and easily obtained
using spreadsheets. The results of this analysis showed that
the proposed model has the lowest AIC value. The model
can compute further studies such as MTTF, burn-in time and
replacement time, when the parameters are estimated.
However, the Maximum Likelihood Estimation (MLE)
technique has several desirable properties for estimating
the parameters of models. Using MLE to estimate the para-
meters, the optimization algorithms are often sensitive to the
choice of starting values. The graphical approach in this
paper can be used as the initial estimate.
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