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Abstract

It is a common situation that the failure rate function has a bathtub shape for many mechanical and electronic components. A simple model

based on adding two Burr XII distributions is presented for modeling this type data. The graphical estimation on probability paper is

illustrated, and examples of its usage are presented. The Akaike Information Criterion was used for judging the adequacy of the models

presented for the numerical examples. It can be seen that the proposed model is a very competitive model for describing the bathtub-shaped

failure rate lifetime data. q 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The probability distribution of the time-to-failure of a

device can be characterized by the failure rate, h�t� �
f �t�=R�t�; where f �t� denotes the density function and R�t�
the reliability function which is also called the survivorship

function. The quantity h�t� represents the probability that a

device of age t will fail in the small interval of time t to t 1
dt; which is also called the hazard function. It is a common

situation that the failure rate function has a bathtub shape for

many mechanical and electronic components. Models which

allow only monotone failure rates might not be appropriate or

adequate for modeling the whole bathtub-shaped data.

Several models have been proposed to model the bathtub-

shaped failure rates; see Refs. [1±5] and they are summar-

ized in Table 1.

Among them, a variety of methods for estimation and

testing based on general principles such as method of

moments, least squares, and maximum likelihood have

been examined and discussed for these models. However,

most models are not practical to be used by reliability engi-

neers. In order to identify the type of hazard rate of a life-

time data, many approaches have been proposed. Glaser [6]

has obtained suf®cient conditions to ensure whether a life-

time model has a bathtub failure rate or not. He also reported

that the corresponding mixture based on Weibull densities is

not bathtub-shaped. In this study, a graphical method based

on total time on test (TTT) transform introduced by Barlow

and Campo [7] and further extended by Bergman and

Klefsjo [8] will be used to illustrate the variety of hazard-

rate shapes. It has been shown that the hazard function of

F�t� increases (decreases) if the scaled TTT-transform,

fF�t� � H21
F �t�=H21

F �1�; where H21
F �t� �

RF2 1�t�
0 R�u�du;

0 # u # 1; is concave (convex). In addition, for a distribu-

tion with bathtub (unimodal) failure rate the TTT-transform

is ®rst convex (concave) and then concave (convex).

The parameters of the model by Haupt and Schabe [3] and

the additive Weibull model by Xie and Lai [5] can be esti-

mated by the probability plotting techniques. It is the inten-

tion to study another practical model for the bathtub-shaped

failure rate function. Burr (1942) constructed the Burr

system of distributions for the expressed purposed of ®tting

the cumulative density function to a diversity of frequency

data forms. The Burr has already been used in a variety of

non-reliability applications such as quality control, accep-

tance sampling and medical study. Zimmer et al. [9]

discussed the Burr XII distribution in reliability analysis

and provided a useful model for representing failure data.

This model is very ¯exible in modeling various types of

lifetime distribution. The reliability and the failure rate

function of the three-parameter model are given by

R�t� � 1

�1 1 �t=s�c�k ; t; s; c; k . 0 �1�

h�t� � kc�t=s�c21

s�1 1 �t=s�c� ; t; s; c; k . 0 �2�
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It can be seen that when c , 1; the failure rate

function decreases, and when c . 2; the failure rate

function reaches a maximum, and then decreases.

The ranges of values where the hazard increases can

be manipulated using s. Thus, the Burr can represent

an increasing, decreasing, unimodal, or essentially

constant hazard rate in speci®ed ranges. In this

paper, we propose a simple model, which is based

on adding two Burr XII distributions. The model is

an additive one in the sense that the failure rate func-

tion is expressed as the sum of two failure rate func-

tions of the Burr XII form. The graphical approach on

probability paper is illustrated for parameter estima-

tion. Some examples are used to demonstrate the

applicability of this additive model.

2. The additive Burr XII model

The additive Burr XII model combines two Burr XII

distributions; one has a decreasing failure rate and another

has an increasing failure rate. Thus, the hazard function for

the additive Burr XII is given by

h�t� � k1c1�t=s1�c121

s1�1 1 �t=s1�c1 � 1
k2c2�t=s2�c221

s2�1 1 �t=s2�c2� ;

t; k1; k2; s1; s2 $ 0; 0 , c1 , 1; c2 . 2

�3�

Then, the cumulative hazard function can be obtained as

H�t� �
Zt

0
h�u�du � k1 ln�1 1 �t=s1�c1�1 k2 ln�1 1 �t=s2�c2 �

�4�
Based on this form of cumulative hazard function, the

reliability function is given by

R�t� � exp{ 2 H�t�}� exp{ 2 k1 ln�1 1 �t=s1�c1�
2 k2 ln�1 1 �t=s2�c2 �}; t $ 0 �5�

The corresponding lifetime distribution function is then

given by

F�t� � 1 2 R�t� � 1 2 exp{ 2 k1 ln�1 1 �t=s1�c1 �
2 k2 ln�1 1 �t=s2�c2�}; t $ 0 �6�

Some plots using the hazard function are displayed in Fig. 1.

It can be seen that this failure function has a bathtub-shaped

curve.

The physical background of this model is clear. A compo-

nent fails because of the occurrence of a failure mode and

usually there are different failure modes associated with a

component. Each failure mode affects the component in a

different way. Suppose that the component is affected by

two major failure modes. Thus, the above model represents

that the component can fail due to either of these two failure

F.K. Wang / Reliability Engineering and System Safety 70 (2000) 305±312306

Table 1

Some models for a bathtub-shaped failure rate

Author Reliability function and hazard function Characteristics

Hjorth [1]
R�t� � 1 2 F�t� � e2dt2

=2

�1 1 bt�u=b ; t $ 0
u � 0!Weibull distribution

h�t� � dt 1
u

1 1 bt

d � b � 0!
exponential distribution

d � 0! decreasing failure rate

d $ ub!
increasing failure rate

0 , d , ub! bathtub curve

Haupt and Schabe [3] R�t� � 1 1 b 2
����������������������
b2 1 �1 1 2b�t=t0

p
0 # t # t0 b # 21=3!

increasing failure rate

h�t� � 1 1 2b

2t0A�1 1 b 2 A� ; 0 # t # t0 where A � ����������������������
b2 1 �1 1 2b�t=t0

p
b $ 1! increasing failure rate

21=3 , b , 1! bathtub curve

Mudholkar and Srirastava [4] R�t� � 1 2 �1 2 exp�2t=s� a�u; t $ 0 u � 1!Weibull distribution

h�t� � au�1 2 A�u21A�t=s� a21

s�2�1 2 A� u� ; t $ 0 where A � exp�2t=s� a a � u � 0!
exponential distribution

a; u , 1!
decreasing failure rate

a; u . 1!
increasing failure rate

a . 1; u , 1!
bathtub curve or increasing

a , 1; u . 1!
unimodal or decreasing

Xie and Lai [5] R�t� � exp�2�at�b 2 �ct�d�; t $ 0; b . 1; d , 1 Bathtub curve

h�t� � ab�at�b21 1 cd�ct�d21
; t $ 0
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Fig. 1. Some typical bathtub-shaped failure rate function using different values of the parameters.



modes. For a component that has a bathtub-shaped failure

rate, the initial failures are usually caused by design faults

and initial problems, which lead to a decreasing failure rate.

Material fatigue or component aging usually causes the last

part of the bathtub-shaped failure rate and this corresponds

to an increasing failure rate. This model incorporates both

types of failures and it can be used to analyze this kind of

failure data collected without knowing what types of failure

have occurred.

One of the uses of a bathtub curve is that we can deter-

mine the optimum burn-in time in the case when the initial

failure rates is too high for the product to be released

directly after production. Also, after a certain time, the

product enters the wear-out phase and replacement should

be considered. The decision can easily be made based on the

model. For example, the product can only be released after

burn-in when the failure rate is less than hb to meet custo-

mers' requirement, then the optimum burn-in time can be

determined by h�t� � hb: Similarly, if the product has to be

replaced by a new one when the failure rate is too high,

higher than hr; then the optimum replacement time can be

determined by solving the following equation h�t� � hr:

Both equations can be solved numerically using standard

algorithms. In addition, the hazard plot can be used to deter-

mine the optimum burn-in time or the optimum replacement

time.

3. Probability plotting procedure

Probability plotting is a graphical method used to inves-

tigate whether an assumed model adequately ®ts a set of

data. It helps the analyst to assess how well a given theore-

tical distribution ®ts the data and to estimate distribution

parameters through least squares (LS) procedure. Plotting

the data values against the corresponding estimated quantile

values, where the scale is adjusted so that the relationship is

linear for a given theoretical distribution, produces a prob-

ability plot. Thus, a linear pattern of points indicates agree-

ment between the data distribution and the theoretical

distribution; a non-linear pattern indicates that the assumed

distribution is not a reasonable representation of the data. If

one can take the log-transformation of both sides in Eq. (1),

the Burr quantile function becomes

ln��R�tp��21=k 2 1� � c ln�tp�2 c ln�s� �7�
Thus, the empirical value of ln��R�tp��21=k 2 1� is plotted

versus the ordered log-transformed data values. Here, R�tp�
is estimated by Herd±Johnson procedure, that is

R̂�tp� �
Yf

r�1

n 2 r 1 1

n 2 r 1 2

where n is the number of units on test, r the order of each

failure after order numbers have been assigned to all units

based on their running times, and f the observed number of

failures. In the case of complete data, the Herd±Johnson

estimate is identical to the maximum likelihood (ML) esti-

mation order-statistic, i=�n 1 1�: If k is unknown, it may be

necessary to construct plots for a series of k values to obtain

a linear pattern. If the plot when k � 1 is concave down,

then smaller values for k tend to linearize the plot; if the plot

when k � 1 is concave up, then larger values of k tend to

linearize the plot. It is because of this concave±convex

relationship of the plots in terms of k that we recommend

that the analyst begin by ®xing k ®rst and then uses the

linear plots to estimate c and s. Such estimates are easily

obtained using spreadsheets. Since the model is based on

two Burr XII distributions, the parameter estimation can be

obtained by the following steps.

Step 1. Using the ®rst few ordered lifetime data, plot the

empirical value of ln��R�tp��21=k 2 1� versus the ordered

log-transformed data values to ®nd the best ®tting straight

line, using LS, therefore, the parameter k1 can be obtained.

Then use the linear plot to estimate c1 and s1:

Step 2. Using the last few ordered lifetime data, plot the

empirical value of ln��R�tp��21=k 2 1� versus the ordered

log-transformed data values to ®nd the best ®tting straight

line, using LS, therefore, the parameter k2 can be obtained.

Then use the linear plot to estimate c2 and s2:

4. Examples

In order to demonstrate the proposed methodology, one

example from literature and one real-world data are used.

Through the use of graphical displays, the intent is that the

reader can gain a perspective of the various meanings and

associated interpretations. In addition, the Akaike Informa-

tion Criterion (AIC) by Akaike [10] can be used to select the

best model among several models. The AIC is given as

follows:

AIC � 22 £ log�maximum log likelihood�
1 2 £ �number of parameters fitted� �8�

The best model for the data as determined by the AIC is the

model with the lowest AIC value. The log likelihood func-

tion from n independent subjects in which ti and ci represent

the failure time data and the censoring times of the ith unit,

respectively, i � 1; 2;¼; n; can be found in Cox and Oakes

[11]. Then this function is given by

`�Q; t� �
X

uncensored observations

log h�xi;Q�1
X

log R�xi;Q�

�9�
where xi � min�ti; ci� and Q is the set of parameters of the

model.

Example 1. Table 2 contains the times to failure of 50

devices by Aarset [12]; the TTT plot indicates a bathtub-

shaped hazard rate in Fig. 2. Let us denote the failure times

by t1; t2;¼; t50 and assume that t1 , t2 , ¼ , t50:
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Muldholkar and Srivastava [4] analyzed this data using an

exponentiated-Wiebull model. The parameter estimation by

maximum likelihood method is obtained by a � 4:69; u �
0:146 and s � 91:023: The mean time to failure is 38.4.

Using the model by Haupt and Schabe [3], plotting i=�n 1 1�

versus �n 1 1�ti=i; we can ®nd an approximate a straight line

with intercept a � 2bt0=�1 1 2b� � 19:889 and slope

tan�f� � t0=�1 1 2b� � 108:29: This gives t0 � 128:179

and b � 0:09: Using the additive-Weibull model by Xie

and Lai [5], a Weibull plot based on the ®rst ®fteen points

gives an estimate of the slope as 0.4996, which indeed

corresponds to a decreasing failure rate at the beginning.

The estimated slope for the last 10 points is 30.069, which

corresponds to an increasing failure rate. The overall para-

meter estimation is given by a < 0; b � 30:069; c � 0:0912

and d � 0:4996: Using the proposed new model, a Burr plot

based on the ®rst 15 points gives an estimate of the slope as

0.5067 and the intercept as 23.885, which indeed corre-

sponds to a decreasing failure rate at the beginning. The

estimated slope for the last 10 points is 152.93 and the

intercept as 2674.39, which corresponds to an increasing

failure rate. The overall parameter estimation is given by

c1 � 0:5067; s1 � 2137:215; k1 � 5:5; c2 � 152:93; s2 �
85:2526 and k2 � 0:5: Furthermore, the estimated para-

meters and AIC values by several models are listed in
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Table 2

Lifetimes of 50 devices (Aarset [10])

0.1 0.2 1 1 1 1 1 2 3 6 7 11 12 18 18 18 18 18 21 32 36

40 45 46 47 50 55 60 63 63 67 67 67 67 72 75 79 82 82 83 84 84

84 85 85 85 85 85 86 86

Fig. 2. TTT plot on the 50 observations in Table 2.

Table 3

The estimated parameters and AIC values in Table 2

Model Estimated parameters AIC Rank

The exponentiated Weibull a � 4:69; u � 0:146 and

s � 91:023

748.41 4

Haupt and Schabe t0 � 128:179 and b � 0:09 470.52 2

The additive Weibull a < 0; b � 30:069; c �
0:0912 and d � 0:4996;

532.89 3

The additive Burr XII c1 � 0:5067; s1 �
2137:215; k1 � 5:5; c2 �
152:93; s2 � 85:2526 and

k2 � 0:5;

444.63 1

Table 4

Time to failure of 18 electronic devices

5 11 21 31 46 75 98 122 145 165 196 224 245 293 321 330 350 420



Table 3. The result indicates that an additive Burr XII model

has the lowest AIC value, and is the model chosen. The

corresponding hazard plots by different models are given

in Fig. 3. It can be seen that an additive Burr XII model is

a very competitive model for describing the bathtub-shaped

failure rate lifetime data.

Example 2. Table 4 represents the lifetime failure

data of an electronic device. The TTT plot indicates a bath-

tub-shaped hazard rate in Fig. 4. Using the model by Haupt and

Schabe [3], plotting i=�n 1 1� versus �n 1 1�ti=i;we can ®nd an

approximate straight line with intercepta � 2bt0=�1 1 2b� �
91:105 and slope tan�f� � t0=�1 1 2b� � 389:94: This gives

t0 � 481:05 and b � 0:12: Using the additive-Weibull

model by Xie and Lai [5], a Weibull plot based on the
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Fig. 3. The hazard function plot based on different models in Table 2.

Fig. 4. TTT plot based on the 18 observations in Table 4.



®rst six points gives an estimate of the slope as 0.7266,

which indeed corresponds to a decreasing failure rate at

the beginning. The estimated slope for the last ®ve points

is 2.2589, which corresponds to an increasing failure rate.

The overall parameter estimation is given by a < 0; b �
2:2589; c � 0:0183 and d � 0:7266: Using the proposed

new model, a Burr plot based on the ®rst six points gives

an estimate of the slope as 0.961 and the intercept as

23.1024, which indeed corresponds to a decreasing failure

rate at the beginning. The estimated slope for the last ®ve

points is 2.5012 and the intercept as 216.136, which

corresponds to an increasing failure rate. The overall para-

meter estimation is given by c1 � 0:961; s1 � 25:2368;

k1 � 0:28; c2 � 2:5012 s2 � 633:5275 and k2 � 10:

Furthermore, the estimated parameters and AIC values

by several models are listed in Table 5. The result indicates

that an additive Burr XII model has the lowest AIC value,

and is the model chosen. The corresponding hazard plots by

different models are given in Fig. 5. It can be seen that the

model by Xie and Lai [5] cannot be ®tted with this data for

describing the bathtub-shaped failure rate. However, the

model by Haupt and Schabe [3] and the proposed model

can describe the bathtub-shaped failure rate for this lifetime

data.

5. Conclusion

In this paper, an additive model based on the Burr XII

distribution for lifetime data with bathtub-shaped failure

rate was presented. The application of the model is

straightforward. The parameter estimation can be estimated

by the simple probability plot technique and easily obtained

using spreadsheets. The results of this analysis showed that

the proposed model has the lowest AIC value. The model

can compute further studies such as MTTF, burn-in time and

replacement time, when the parameters are estimated.

However, the Maximum Likelihood Estimation (MLE)

technique has several desirable properties for estimating

the parameters of models. Using MLE to estimate the para-

meters, the optimization algorithms are often sensitive to the

choice of starting values. The graphical approach in this

paper can be used as the initial estimate.
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Fig. 5. The hazard function plot based on different models in Table 4.

Table 5

The estimated parameters and AIC values in Table 4

Model Estimated parameters AIC Rank

Haupt and Schabe t0 � 481:05 and b1 � 0:12; 221.77 2

The additive Weibull a < 0; b � 2:2589; c �
0:0183 and d � 0:7266

247.05 3

The additive Burr XII c1 � 0:961; s1 � 25:2368;

k1 � 0:28; c2 � 2:5012;

s2 � 633:5275 and k2 � 10

219.22 1
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