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Abstract. Failures in repairable systems are often described by means of non-homoge-
neous Poisson processes, identified by their intensity and mean value functions. Inter-
vention on the systems are likely to modify their reliability, and changes in intensities
and mean value functions are therefore induced. We consider different scenarios in which
interventions take places and propose models describing each of them. Bayesian analyses,
relying on Markov-chain Monte Carlo methods, are illustrated along with applications to
simulated and real, widely-known, data.

Key words: Bayesian inference, power law process, Markov-chain Monte Carlo methods,
change points.

1. Introduction

Repairable systems are those systems or machines which, in the event of a
failure, can be repaired and returned to regular operation. In some cases,
the reliability of a system, after a repair or an “intervention”, returns to
the same state as before repair. This condition is commonly called “bad-
as-old” or “same-as-old”.

Failures of such repairable systems are often described by means of non-
homogeneous Poisson processes (NHPP), mainly the Power Law process
(PLP); see, among others Ascher and Feingold (1984), Bain and Engelhardt
(1991), Crow (1974), Crow (1982), Thompson (1988) and, for a review of
Bayesian literature on PLP, Bar-Lev et al. (1992). Other NHPPs have been
considered in, e.g. Pievatolo et al. (2003) and Pievatolo and Ruggeri (2004).
A general review of NHPP’s and their applications to the reliability of
repairable systems can be found in Rigdon and Basu (2000).

The NHPP, such as PLP typically assume that the reliability of a sys-
tem evolves continuously over time. When reliability of a repairable system
is modeled using such a NHPP, it is implicitly assumed that the reliability
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of the system remains the same before and after the repair, i.e., the inter-
vention on the system in the form of a repair does not affect the reliability
of the system. In many cases, however, the reliability of a system, after an
intervention such as a repair, may be different to that before the interven-
tion, i.e., the reliability may improve or decline due to an intervention.

It is therefore of interest to model the reliability of a system in a way
that allows changes in reliability due to interventions on the system. These
interventions may involve known ones such as repairs, and also involve
interventions that occur within the system that may not be known to the
investigator but affect a change in the reliability of the system.

In this paper, we focus on modeling changes in the reliability due to
interventions of the system by allowing changes (or discontinuities) in the
intensity function of such NHPPs, focusing mainly on the PLP. Specifically,
we consider two different types of change point models. In the first, we
consider models that allow changes in reliability level after each failure, as
the the system is repaired and put to operation, e.g., in software reliability.
In the second, we consider a model that allow changes at random points
in time, due to breakdown of a component without causing the failure of
system or due to interventions by the maintenance squad at unknown time
points. Change points in homogeneous Poisson processes (HPPs) were con-
sidered by Raftery and Akman (1986) and Green (1995).

In Section 2, we consider a general class of NHPPs, as well as some spe-
cific models including the PLP. In Sections 3 and 4, we mainly focus on
PLP. In Section 3, we consider both a hierarchical and a dynamic model
for the case of change points at each failure; the models are then applied to
simulated data sets and compared. In Section 4, we expand on the previous
models by allowing change points at an unknown subset of failure times,
rather than at each failure time, to allow the possibility that change in reli-
ability does not occur at every failure time. In Section 5, we model changes
in reliability at random number of change points and at random locations.
Here, we use the reversible jump Markov-chain Monte Carlo (RIMCMC)
method and provide the details for general NHPP as well as some specific
ones described in Section 2. In Section 6, we illustrate the application of
the proposed methods to simulated and real data, and end the paper with
some remarks.

2. A class of Non-homogeneous Poisson Processes

The NHPP are identified by their intensity function A(¢;6) and/or their
mean value function v(z;0) = fot A(u; 0)du. Suppose we observe the system
up to time y and let n be the number of failures, occurred at times #; <, <
.-+ <t,; then the likelihood function is given by
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L@;ty=] [ 1) exp {— /y k(t)dt} ,
i=1 0

where t=(¢1,...,t,).

A general class of NHPPs can be described by their intensity function
A, M, B)=Mg(t,B), with M, 8 >0, such that their mean value function
s v(it; M, 8) =MG(, B), with G(t, B) = fol g(u, B)du. This class contains
well-known processes, such as the Musa—Okumoto, the Cox—Lewis and the
Power Law processes.

The first process described in Musa and Okumoto (1984) has been
widely used in modeling software reliability; it has intensity function
Alt; M, B) =M/ + 8) and mean value function v(z; M, 8) = M log(r +
B). The second process described in Cox and Lewis (1966) is such that
A(t; M, B)=M exp{Bt} and v(t; M, B) = (M/B) [exp{Bt} — 1].

In this paper, we focus on the Power law process (see, e.g. Ascher and
Feingold, 1984), but other processes can also be considered likewise. The
intensity and mean value functions of a Power law process are given,
respectively, by A(t; M, B) = MBtP~! and v(t; M, B) =Mt?, M, >0. Note
that M =v(l; M, 8) denotes the expected number of failures up to time
t =1, whereas 8 determines how reliability decays or grows. For 8 <1, the
intensity function decreases over time and the reliability grows, as a conse-
quence. The HPP is obtained by taking =1, whereas A(f) is an increasing
concave (straight, convex) curve if 1 <8 <2 (B=2, 8>2).

There has been much interest in using PLP where the value of 8 varies
over time. Previous research has used PLP where the value of 8 is allowed
to change at two fixed time-points. This model allows for three different
stages of reliability: first and initial stage where reliability improves (8 < 1)
up to a time #;, a second stage where the reliability remains the same
(B=1) over a period between #; and #,, and a third and final stage where
the reliability of the system declines (8 > 1) after time #,.

We consider different scenarios in which interventions take place and
propose models that allow change points in reliability to occur. Specifi-
cally, we consider models which: adaptively adjust for change points allow-
ing change in 8 at each failure time; detect change points allowing change
in B at random (failure) times.

3. Changes at each Failure Time

Suppose that interventions occur right after each failure (at times 7,s),
modifying the value of . Changes in M can be considered in a similar, but
cumbersome, manner, and so we do not pursue that here. We denote the
parameter value at time ", i=1,...,n, right after a failure, by B;, identi-
fying the process over (¢;,%1]. We denote by By the parameter value over
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(to, 11]. Here we take rp=0 and t,,, =y, i.e. the endpoints of the observa-
tion interval.

3.1. SIMULATED DATA SETS

To illustrate our methodology we use, among other, two simulated data sets
obtained using a PLP with change points in the values of 8. Plots of fail-
ure times versus failure number are given in Figures 1 and 2. In simulated
data set 1, there is a change point (in the value of 8) after 11th failure, and
in Simulated Data Set 2, there are two change points, one after fifth failure
and the other after 13th failure. Note, however, from Figure 2 that there
also appears to be a (unintended) change point at the 8th failure time.

3.2. A HIERARCHICAL MODEL

When the system is fairly stable over time, it may be reasonable to assume
that B;’s are similar. This can be done by using a hierarchical model as fol-
lows. In the first stage, given (¢, 0?),

B; are iid. LN (¢,0%), i=0,....n

and, in the second stage, ¢ and o2 have N (u,t?) and ZG(p,y) distribu-
tions, respectively. (LN, N and ZG denote, respectively, lognormal, normal
and inverse gamma distributions.)

Time

Failure

T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Failure Number

Figure 1. Simulated data set 1: 8=0.7 for t <11, =2 for t > 11.
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-
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Failure Number

Figure 2. Simulated data set 2: 8=0.6 for t <5, B=1 for 6<r <13, B=2 for t > 14.

Note that the likelihood based on the PLP (from the likelihood for a
general NHPP given in Section 2), is

n n+1
LM, p.a.0% 0 =M" ] piost " exp {‘M > (i —zf_"f)} |

i=1

i=1

Assuming a gamma prior G(«, §) for M, one can write down the follow-
ing full conditionals (given the rest of the parameters we omit).

- M~G(a+n, s+ 3021 —i7),
- 02~IG(p+n/2,T+(1/2) > (og i — )%,
i=0
- o ~N(u, 1'12), where py = (uo? 41237 o log Bi)/(c* + (n+1)r?) and
t2=1202/(2(n+ 1) +0?),
— Broctlt exp{—M (i, — 1) —[(log B; — $)*1/(20H)}.i =0, ... .n—1,
— Buox B, lexp { - M(ffj’rl — iy — [(og B, —¢)2]/(202)}-

One can use the above full conditionals to simulate from the joint pos-
terior via Metropolis—Hastings and Gibbs sampling.
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3.3. A DYNAMIC MODEL

We suppose that at time 7, i=1, ... ,n, right after a failure, the parameter
Bi_1, identifying the process over (f;_1, t;], is modified according to

log B =log a+log Bi—1 +ei, (1)

where B; is the value of 8 over (#;,%,1], a is a positive constant and ¢; is a
normally distributed random variable with mean 0 and variance o (heter-
oskedasticity would be possible but it would imply no relevant conceptual
difference).

Let By be the value of B over (0,#], B = (Bo,...,Bs) and B =
Bo,---»Bi—1, Bitts---, By). We set tp=0 and 1,,; =1y, as before.

Consider a gamma prior on M, i.e. M ~ G(a,8), an inverse gamma
prior ZG(p,t) on o2, and two lognormal distributions, LN (u,o?) and
LN (¢,02), on alo? and Bylo?, respectively. Note that we could have
taken independent priors on both a and By and the posterior distributions,
although more cumbersome, would be slightly affected. The dependence
upon o2, besides its mathematical convenience, can be justified by the rela-
tions among the S;’s.

Under the previous choices for the prior, it is possible to obtain the full
conditional distributions for M, o and a, whereas they are known apart
from a constant for 8;, i =0,...,n.

In particular, we obtain

n+l '
* M|, 0% a, t~g<a+n, R _t,fi*ll]),
i=1

o XM, B,a, t~IG(p+n/2+1, v+ (1/2) X0 log*(Bi/(@Bi_1))
+ (log a — p)* + (log Bo — $)?),

* alM, B, 0% t~ LN ([ +log B, —log fol /(n+1), 0%/ (n+1)),

® IBH|M’ ﬁ(n)v 62’ a, toc(l/ﬁn) eXp{_M(yﬁ" _trllg”) _[(log ﬂﬂ _log a
—log B,-1)?] /(20%)},

o BolM. By, 02, a, toct] exp{—Mt[* — [(log B1 —log a —log Bo)?
+(log Bo—¢)*] /2o %)},

© BiIM, By, 02, a, toct! exp{—M (P — 1) —[(log B; —log a
—log Bi-1)*+(log Biy1 —loga—log §;)*] /20%)},i=1,... ,.n—1.

We can now use a Gibbs algorithm with Metropolis steps to sample the
posterior distribution.
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3.4. EXAMPLES

We now use the above models on the data sets discussed in Section 3.1. In
the following tables we give the estimates of 8;’s and their standard devia-
tions. Here, B; stands for the value of B after the ith failure. Our goal here
is simply to see how well the proposed models capture the (known) change
points in the simulated data sets, rather than to evaluate the model fit using
a formal method. Table I give the estimates of §;’s for Simulated Data Set
1, using the hierarchical and dynamic models. We used vague priors by
choosing « =§=.01, p=1t=0.01, and u=¢ =0. When prior information is
available, it may be incorporated in the prior distribution (see Campodon-
ico and Singpurwalla, 1995) for an illustration of this in the context of
Poisson point process.

Note that the dynamic model estimates of the parameters 8; capture the
true values better than the hierarchical model, which is reasonable as the

Table I. Failure number (i) and posterior mean and std. dev. of B
for Simulated Data Set 1: 8=0.7 for t <11, §=2 for t > 11, using
the hierarchical and the dynamic models

Hierarchical model Dynamic model

Failure number Mean (8;) Std. Dev. Mean (8;) Std. Dev.

1 2.58 1.67 0.86 0.57
2 1.8 1.26 0.81 0.48
3 0.66 0.35 0.68 0.33
4 2.9 0.89 1.1 0.67
5 1.01 0.41 0.92 0.37
6 1.14 0.43 0.94 0.38
7 0.86 0.35 0.85 0.31
8 1.01 0.37 0.93 0.33
9 1.81 0.55 0.99 0.31
10 2.17 0.6 1.92 0.54
11 2.04 0.59 2.28 0.47
12 4.35 0.94 3.68 0.98
13 1.88 0.56 2.26 0.43
14 2.55 0.68 2.57 0.55
15 1.77 0.54 2.08 0.44
16 245 0.65 241 0.54
17 1.89 0.56 2.01 0.46
18 1.6 0.51 1.67 0.45
19 1.16 0.54 1.35 0.51
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values of 8 used in the Simulated Data Set 1 belong to two separate time
periods of equal values, a phenomenon not consistent with the assump-
tion under hierarchical model. Note that the dynamic model also seems to
adapt to a temporary (unintended) change near the fourth failure time.

Table II gives the estimates of §;’s for Simulated Data 2 using the dynamic
model. We note that the estimates remain fairly steady over the duration with
no (true) change points and adapt well to the (known) change points.

Suppose that the interventions occur at random points, instead of right
after each failure as assumed above. Assuming, for instance, that interven-
tion times 7;’s follow a HPP, we can update 8’s as in (1), except that now
the changes occur at 7)’s instead of #s.

4. Changes at a Random Number of Failures

Often, it may be desirable to allow change points in the values of 8 only
as needed, rather than at every failure time as done in Section 3. This may

Table II. Failure number (i) and posterior
mean and std. dev. of B; for Simulated
Data Set 2: 8=0.6 for r <5, =1 for 6<
t <13, p=2 for t > 14, using the dynamic
model

Failure number Mean (8;) Std. Dev.

1 0.82 0.55
2 0.78 0.43
3 0.68 0.30
4 1.28 0.77
5 1.13 0.39
6 1.20 0.41
7 1.11 0.36
8 1.18 0.38
9 1.17 0.36
10 1.37 0.39
11 1.51 0.37
12 3.02 1.16
13 2.19 0.44
14 2.52 0.56
15 2.09 0.44
16 2.39 0.54
17 2.03 0.47
18 1.70 0.46
19 1.41 0.53
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be achieved by modeling whether a change occurs at a failure time as a
Bernoulli random event. Thus, we define Z=(Z4, ..., Z,), such that Z;=1
implies that the ith failure time #; is a change point, whereas Z; =0 implies
that it is not a change point. Thus, we may write

log Bi=log Bi—1 +¢€;

with €; having N(0,02) if Z; =1 and point mass 8, at 0, otherwise.

Instead, we prefer a computationally simpler form based on George
and McCulloch (1993), and let ¢; have N(0,0?) if Z; =1, and ¢ have
N0, w?c?), if Z; =0, where w is very small. Here, P(Z; =1)=p may be
fixed, or a prior could be given on it.

We consider a lognormal model LN (¢, o2) for Bolo? (we prefer a larger
value of variance, with respect to w202, to draw the first 8), and an inverse
gamma prior ZG(p, 7) for o2.

Using this model, the conditional posterior p(@|t, Z) is proportional to

M" ngi_ltiﬂm—l exp {—M Z [lﬁl — liﬂf]]
i=1 i=0

Jr?=p)' 7 - T]V2mo) ™" exp{—[log g; —log Bi1}* /(207))
i=1 i=1

{(v2ma o)~ exp(—[log Bo— ¢]* / 20},
where
o,=0 ifZ;=1 and o;,=wo if Z;=0.

Consider a gamma prior on M, i.e. M ~G(«a, §), an inverse gamma prior
IG(p,t) on o2

Under the previous choices for the prior, it is possible to obtain the
full conditional distributions for M, and o2, whereas they are known apart
from a constant for B;, i =0,...,n. In particular, we obtain, conditional
on the rest of the parameters:

© M~Glatn, 8+t — 1D

o 02~ TG+ (/DEHZ =N+ 1T+ (/D) [,y (0g(Bi/fir))?
+ Zi:Zi=0(10g(ﬁi/,3i—l))2/w2 + (log Bo— )],

o Booct]" exp{—M1]" — (log p1 —log f0)*/(207)
—(log fo—#)*/(20%)},

o Broctl exp{—M[tf,, — /'] — (log B; —log Bi-1)*/(20}P)
—(log Bis1—log B)?/ 207 DY, i=1,....,n—1,
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Table I11. Failure number (i) and prob-
ability of change point at i for simu-
lated data set 1: $=0.7 for r <11, =2
for r>11

Failure number Prob. change point

2 0.07
3 0.14
4 0.07
5 0.05
6 0.04
7 0.02
8 0.02
9 0.01
10 0.02
11 0.94
12 0.01
0.01

3 0.01
14 0.01
15 0.01
16 0.01
17 0.01

e B.oc(1/B,) exp{—M [tfil - ff] — (log B, —log Bu—1)*/ (201},
e Z;~ Bernoulli(p;),

where

pfin(Bis Bi1,0%)
pfin(Bi: Bim1, 0D + (1= p) fun(Bis i1, w)]

and fin(-; p,o?) is the pdf of the lognormal distribution LN (u, o?).

The Beta Be(u,v) on p is updated to Be(u+>_ Z;,v+> (1 —Z;)). We
can sample the posterior using a Metropolis within Gibbs algorithm as ear-
lier. Tables IIT and IV show that the method is able to give high probability
of being a change point to the actual ones.

In the examples below, we used vague priors with @ =38 =0.01, p =3,
t=2, and $ =0, p=0.5, and used w?>=0.001. The choice of w? affected
the answers to the extent that choosing a larger value for w? still identi-
fied the same change points but the associated probability was somewhat
smaller. In practice, the choice of w? may be chosen to reflect the size of
change one deems warrants a change point.

Pi=[
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Table 1V. Failure number (i) and proba-
bility of change point at i for simulated
data set 2: B=0.6 for t <5, B=1 for
6<t<13, =2 for t > 14

Failure number Prob. change point

2 0.11
3 0.11
4 0.07
5 0.81
6 0.22
7 0.04
8 0.03
9 0.03
10 0.03
11 0.04
12 0.04
13 0.86
14 0.51
15 0.04
16 0.04
17 0.02
18 0.05

5. Changes at a Random Number of Points

Our main premise is that change points in reliability occur when there is
an intervention. In the above, we considered intervention due to a failure.
However, it is plausible that certain other type of interventions that may
not be directly observable, such as an internal failure, may occur at ran-
dom, causing a change in reliability. Thus, it may be desirable to allow
change points at random time points. We follow Green (1995), where a
reversible jump algorithm has been used to detect change points in a Pois-
son process whose intensity is a step function. We consider NHPPs with
intensity A(¢; M, B) = Mg(t, B), as described in Section 2, and parameters
M and B modified after each change point.

We refer to the paper by Green for a thorough illustration of the revers-
ible jump technique and discussion on the choice of the moves in the step
function case. Here we mainly stress the differences with his approach and
outline the main features of the method we follow.
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5.1. A PRIOR MODEL

We suppose that k, the number of change points, is drawn from a truncated
Poisson distribution p(k), k=0, ..., K, with parameter w. We choose K to
be significantly smaller than the number of observed failures. A truncated
geometric distribution could have been chosen as well, affecting the selec-
tion of the possible moves to be described later, but the results should be
only very slightly affected by the choice between the two priors.
Conditional upon k, the change points 7; are such that 0 <7} <--- <
T: <y, whereas the parameters of the intensity function A(t; M, 8) take

the values M; and B; on the subinterval (7, Tj41), j=0,...,k (assuming
T():O and Tk+1 :y).
As in Green (1995), we assume that the & change points Ti,..., T; are

distributed as the even-numbered order statistics from 2k + 1 independent,
uniformly distributed r.v.’s on (0, y]. The choice of 2k+1 r.v.’s instead of k
is justified by the desire of avoiding “small” subintervals.

We suppose that both the parameters By,..., B8 and My,..., M, are
independently drawn from Gamma priors, the former ones from G(«, )
whereas the latter ones from G(e, ¢).

5.2. REVERSIBLE JUMPS

As described in Green (1995) transitions from a set of parameter values to
another occur according to reversible moves. Here we consider four possi-
ble moves:

[P] change to the parameters M and 8 at a randomly chosen change point
Tj;

[L] change to the location of a randomly chosen change point;

[B] “birth” of a new change point at a randomly chosen location in (0, y];

[D] “death” of a randomly chosen change point.

At each transition, we attempt one of the four possible moves, choos-
ing randomly one of them. Depending only on the number k of change
points, the probability of choosing the move [P], [L], [B] or [D] is given
by mk, nk, br and d, respectively. Note that my + ny + by +di, =1 for all k,
do=no=m9=0 and bg =0, where K is the maximum number of allowed
change points.

We consider by =cmin{l, p(k+1)/p(k)} and dy =min{l, p(k)/pk+ 1)},
so that by p(k) =d;1 p(k+1). Green suggests choosing 7y =n; for k0 and
¢ as large as possible so that by +d; <0.9, for all k=0,..., K. We follow
his suggestions.
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5.2.1. Move of Type |P]

We first randomly choose the index j€{0,...,k} identifying the parame-
ters M; and B; to be changed; then we propose new values M;. and ﬁ}

drawn such that both log(M;. /M;) and log(ﬂ;. /B;) are uniformly distributed
on [—0.5,0.5].

Consider the likelihood ratio p(t|My;, By, M, B,)/ p(tIMj), Bjy. M, B;)
for a general NHPP with intensity A(t; M, 8) = Mg(¢, B), as described in
Section 2. Under this move, the likelihood ratio depends only on what hap-
pens in [T, Tj41) since everything else cancels out; thus the ratio becomes

LRp=(M;/Mp)"I' T]le. B))/8(i. B)] ©)
liEIj
exp | = Mi[G(Tj41, B) = G(Ty. DI+ MG Ty, B~ G(Ty. 1} ()

where I;={t;:t; €[T;, Tj+1)}, |I;| is the size of I; and the product over the
t;s in I; equals one when |/;|=0.
As an example, the likelihood ratio for the PLP becomes

g ITT 57 i _ph B _ b
LRp=(M,p;/M;B)"" [ ’exp{—Mj[THl—Tj']-ij[TjH—Tj']}.

IiEI_,'

Similar results are obtained when considering other processes.
The acceptance probability for the move turns out to be

min{l, LRp - (M,/M)) exp{—¢(M; — M)} (B;/B)" exp{—8(B; — B)}}.

5.2.2. Move of Type [L]

We first randomly choose the index j €{l,...,k} identifying the change
point 7; to be moved; then we propose a new location ij drawing it from
a uniform distribution on [7;_1, T;41].

Consider the likelihood ratio p(t|M, g8, T;), T]f)/p(t|M, B, T, T;) for a
general NHPP with intensity A(z; M, B) = Mg(t, B), as described in Section
2. Under this move, the likelihood ratio depends only on what happens
between 7; and 7 since everything else cancels out; thus the ratio becomes

LRy ={(Mj1 /M) T L8 Biv0)/8 i, BpIFE "0 “)
el
exXp(=M1 [G(T}, Bj40) = G(T), B |+ M; [ G(T;, B) = G (T, B . 5)

where I; ={t; :t; € (min{T}, T3}, max{7;, T:}}, sgn(a) equals a/|a| for a #0
and 0 otherwise, and the product over the ;s in I; equals one when |/;|=0.
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As an example, the likelihood ratio for the PLP becomes
sgn(ijTj/)

LRy =1 (Mjs1Ba/ M) [T /7"

f[Glj

expl—M;n 1] 1" 1+ M[r] ~ 1)
The acceptance probability for the move turns out to be

min{l, LR -[(Tj41 = T)(T; — T;-D1/[(Tjz1 — T))(T; = T;—)]}.

5.2.3. Moves of Type |B] and |D]

For a birth ([B]), we draw a new position 7* from a uniform distribu-
tion on (0, y]. It lies in (7}, T;41], for some j, where the parameters are
B; and M;. The new parameters, (8,, M) in (T;, T*] and (ﬂ}H,M}H)
in (T*,T;41], are chosen to preserve the weighted geometric mean, as in
Green (1995),

(T* —T))log B;+ (Tj11 —T*)log B, = (Tj+1—T)) log B; (6)
and the expected number of failures in (7}, Tj11],
Mi[G(T*, B,) = G(T;, B+ M, ([G(Tjs1. By ) — G(T*, B )]
=M;[G(T;11, Bj) — G(T}, B))]- (7)
The condition (7) becomes
M/ [T*ﬂ; . Tﬂ;]_i_M/ [Tﬁ;’ﬂ _ T*ﬂ;ﬂ]
J J JHILEj+1
for the PLP,
(M /B)lexp{T*B;} —exp(T;B;}]
+(M /B Dlexp{T 1 By ) —exp{T* B, }]
=(M;/B;) [exp{T;+1B,;} —exp{T;B;}]

for the Cox—Lewis process and

M} log[(T™* + /3;')/(Tj + 5})] + M}+1 log[(Tj41 + '3;'+1)/(T* + 'B;'H)]
=M;log[(T;1+B)/(T; + Bj)]

for the Musa—Okumoto process.
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We define the perturbations of the parameters to be such that
Bia/B)=0—w)/u and (M, /M,)=(1-w)/w, (8)

with # and w independent and drawn uniformly from [0, 1].
The acceptance probability for a “birth” move turns out to be

min{l, LRp - Priorratio - Proposal ratio - Jacobian},

where the likelihood ratio LRp is similar to the previous ones, the prior
ratio is
plk+1)2(k+1)2k+3) (T*—=T))(Tj11 —T%)
P(k) yz Tj-H — Tj

(6*/ T (@)B;B1/B1*

exp{—8(B+B;11— BN/ T(ENIM; My /M exp{—¢(M; + M, —M,)}
the proposal ratio is

diy1y
be(k+1)

whereas the Jacobian is given by
B+ B, (M, +M, )
Bj M; '

The proof of the result on the Jacobian is as follows. We set, just for
simplicity, a=p;,b=8,,,c=M; d=M, , and W =(T*=T;)/(Tjs1 —T)).

)

It can be shown that the equations (6) and (8) imply
u=a/(a+b), w=c/(c+d), Bi=a"b'"".
Equation (7) can be written as
Mj=cfi(a,T;, T*, Tj11) +dfa(b, Tj, T*, Tj11). (10)

The inverse of the Jacobian is given by considering the derivatives of
u,w, B; andM; with respect to a,b,c and d, i.e.

b/(a+b)? —a/(a+b)? 0 0
0 0 d/(c+d)? —c/(c+d)?
Ub/a)'™Y (1 —=W)(a/b)¥ 0 0 ’
M, IM; aM; M,
da ab ac od

which becomes, after some computations,

B; [ 3M./+d3Mj]
! ! ! ! C 9
B+ B> M+ M ) | dc ad
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Table V. Number of change points
for simulated data set 1

k 0 1 2 3 4

Prob. 0 0 0.71 024 0.05

which is the inverse of (9) since

oM ; oM ;
M:=c—2L d—J,
=% T
because of (10).
The “death” move [D] is given by randomly choosing a change point
T;+1 and moving from the triple (7}, Tj41, Tj4+2) to the pair (ij, T}+1) (and
the corresponding parameters), so that the following conditions hold:

(Tjs1—Tj)1og B + (T2 — Tjr1) log Bj1 = (Tj,, — T)) log B,
M;[G(Tjt1, Bj) — G(T;j, BHI+M;1[G(Tj42, Bjx1) — G(Tj11, Bjs1)]

ZM}[G(T}H, /3}) — G(ij, ,3;.)],

The acceptance probability for the “death” move is similar, with the due
changes.

6. Detection of the Number of Change Points

We now consider simulated and well-known actual data and apply them
the reversible jump MCMC method proposed in Section 6. We just focus
on the issue of detecting the number of change points, actually the poster-
ior distribution on their number.

EXAMPLE 6.1. We consider the Simulated Data Set 1. As shown in Table
V, it is worth mentioning that the method rules out the possibility of no
change point, favoring a model with two change points. This is expected
(and confirm those in Sections 3 and 5) since data were drawn from
a NHPP with one change points and a second one, albeit temporary,
appeared after the data simulation. It is interesting that the model with
three change points gets a 0.24 probability. Therefore, the method is quite
satisfactory in detecting the number of change points and, actually, gives a
new insight to be further explored with the search of actual change points.

EXAMPLE 6.2. The data in Table VI are from Rigdon and Basu (1989)
and they are the failure times of an aircraft engine.
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Table VI. Failure times in hours for air-
craft engine data

i = Failure number 1 = Failure time

55
166
205
341
488
567
731
1308
2050
2453
3115
4017
4596

O 0 3 N L A W N —

—_ = =
W o = O

Table VII. Number of change
points for aircraft engine data

k 0 1 2 3
Prob. 0.61 030 0.09 0

We remind that the B’s and M’s parameters have Gamma priors, i.e.
G(a,8) and G(e, ¢), respectively. In this example we used e =8 =€ =¢ =
0.3, whereas we considered a truncated (up to K =10) Poisson distribution,
with parameter w =4, as the prior for the number k& of components.

The posterior probability distribution of & is given in Table VII. When
k=1, the posterior distribution of the two 8; and B, (the B parameters of
the PLP in the two intervals) have means 0.46 and 0.34, respectively, and
standard deviations 0.15 and 0.14, respectively. This seems, along with the
distribution of k, to indicate that the model used in this approach tends to
favor no change points.

EXAMPLE 6.3. A well-known data set for change point analysis is given
by the dates of serious coal-mining disasters, between 1851 and 1962, stud-
ied (e.g., in Raftery and Akman (1986).

As in Example 6.2, we used « =8 =€ =¢ =0.3 as values of the Gamma
priors on B’ and M’s, and w =3 as the parameter of the truncated (up
to K =10) Poisson prior on k. Visual inspection of the draws from the
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Table VIII. Number of  change
points for coal-mining disasters
data

k 0 1 2 3

Prob. 0.01 0.85 0.14 0.09

RIJMCMC in the from of trace plots, for the location of change points and
the PLP parameters, indicated satisfactory convergence.

The posterior probability distribution of k is given in Table VIII. It
is worth mentioning that Raftery and Akman (1986) have found out one
change point in the data. Our model confirms the existence of one change
point and allows for a possible second change point. The posterior median
of the the change point (conditional on a single change point) is in March
1892, and the 95% equal tail credible interval is April 1886 to June 1896.
This is quite in agreement with the results reported in Raftery and Akman
(1986). One could also provide the probability of change point in any
given time interval, e.g., between two consecutive failures, conditional on
the number of change points or unconditionally, by taking the appropriate
relative frequencies from the RIMCMC output.

For large data sets such as this, the model where change points are
included as needed and which does not require the introduction of many
latent variables, would be preferable to the model considered in Sections 3
and 4.

7. Discussion

We have fitted various models for change points to reflect different scenar-
i0s that may cause change points in reliability to occur. These methods may
be used in general NHPP, including the PLP which was the main focus in
this paper. Which models is appropriate to use (between the models in Sec-
tions 4 and 5) in a specific case depends partly on the underlying phenom-
enon that is believed to cause the change point. For instance, if a change
point may only be associated with a failure as may be the case in soft-
ware reliability, the model in Section 4, would be more appropriate. On the
other hand, if it is not clear which model may be (more) appropriate, we
would recommend the more general model of Section 5. While carrying out
a model selection using Bayes factors, or any other informal approach may
be of interest, we feel that it is beyond the scope of this paper, and hope
to address this elsewhere. We, however, note that these models themselves
may be viewed as inherently mixed models, and hence the inference derived
can be thought of as resulting from some suitable model averaging.
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