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A novel repair model for imperfect maintenance
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Commonly used repair rate models for repairable systems in the reliability literature are renewal pro-
cesses, generalised renewal processes or non-homogeneous Poisson processes. In addition to these mod-
els, geometric processes (GP) are studied occasionally. The GP, however, can only model systems with
monotonously changing (increasing, decreasing or constant) failure intensities. This paper deals with
the reliability modelling of failure processes for repairable systems where the failure intensity shows a
bathtub-type non-monotonic behaviour. A new stochastic process, i.e. an extended Poisson process, is
introduced in this paper. Reliability indices are presented, and the parameters of the new process are es-
timated. Experimental results on a data set demonstrate the validity of the new process.

Keywords: renewal process; geometric process; corrective maintenance; preventive maintenance; main-
tenance policy.

1. Introduction

A repairable system is a system which, after failing to perform one or more of its functions satisfactorily,
can be restored to fully satisfactory performance by any method, rather than the replacement of the entire
system (Ascher & Feingold, 1984a). Repair models developed upon successive inter-failure times have
been employed in many applications such as the optimisation of maintenance policies, decision making
and whole-lifecycle cost analysis. With different repair levels, repair can be broken down into three
categories (Yanez et al., 2002): perfect repair, normal repair and minimal repair. A perfect repair can
restore the system to as good as new, a normal repair is assumed to bring the system to any condition and
a minimal repair (or imperfect repair) can restore the system to the state it was before failure. Examples
of models for perfect, normal and minimal repair are renewal process (RP) models or homogeneous
Poisson process (HPP) models, generalised renewal process and non-homogeneous Poisson process
(NHPP) models, respectively. According to the dependence of failure intensities on time, repair models
fall into three categories: models with constant failure intensity (e.g. HPP models), models with time-
dependent failure intensity (e.g. NHPP models) and models with repair time-dependent failure intensity
(e.g. geometric processes (GP) models, Lam, 1988).

Denote the survival time after the (n − 1)th repair by Xn . {Xn, n = 1, 2, . . .} is assumed to be
a sequence of independent exponential random variables in HPP models, a sequence of independent
and identical random variables in RP models and a sequence of exponential random variables with
time-dependent means in NHPP models. A GP (Lam, 1988) is a sequence of independent non-negative
random variables, {Xn, n = 1, 2, . . .}, such that {un−1 Xn, n = 1, 2, . . .} (where u(>0) is the param-
eter of the process) is an RP. In addition to the above-mentioned models, various repair models have
been introduced under different assumptions (Block et al., 1985; Brown & Proschan, 1983; Lindqvist
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FIG. 1. Bathtub curve.

et al., 2003; Wang & Pham, 1996). The reader is referred to Pham & Wang (1996), Scarf (1997) and
Wang (2002) for detailed and comprehensive discussions on the theoretic aspects and the applications of
repair models.

A common assumption of both the perfect repair model and the minimal repair model is that a
repaired system is exactly at a specified state, e.g. as good as new state. This assumption is too strict to
be applied in some scenarios. The normal repair model, however, is more realistic because it assumes
that a repaired system is either newer or older than that before its failure. In these models, the failure
intensity of the system after repair is different from that before the failure occurs. Hence, it is reasonable
to use a model such as a GP to deal with these situations as the failure intensity patterns after each repair
can be differentiated in a GP.

A GP can describe a stochastically decreasing trend of the survival time of a system after repairs,
or a stochastically increasing trend of the repair time after failures. It has interesting properties as they
extend HPPs and RPs, and is easy to use. Researchers (Lam, 1988; Lam et al., 2002; Lam & Zhang,
2003; Zhang, 1999, 2002; Wu et al., 1994) made use of the GP to develop maintenance policies and
analysed system reliability indices such as steady-state availability and system reliability. A weakness
of the GP is that it can only model the system behaviour where the failure intensity of the system is
monotonously increasing or decreasing with the operating time. It cannot model the system behaviour
where the failure intensity of the system shows a non-monotonic or a more complicated trend. For
example, a well-known curve for describing the change of failure intensity is bathtub-shaped. Patterns
of failure intensities in the reliability theory and practice are usually illustrated using the bathtub curves
which define the whole survival time of a population of devices. A typical bathtub curve (see Fig. 1)
comprises three successive distinct periods: an infant mortality failure period with decreasing failure
intensity, following a random failure period of time with a constant failure intensity and a wear-out
failure period with an increasing failure intensity. The GP can only model system behaviour within one
of the three periods in a bathtub curve, such as only the infant mortality failure period, only the random
failure period or only the wear-out failure period.

In this paper, we introduce a new NHPP. The new process can model the system behaviour within
the whole lifetime. That is, it can model the failure pattern from the infant mortality failure period, to
the random failure period, to the wear-out failure period in a bathtub curve. The parameters of the new
process are estimated, and a data set from Davis (1952) is borrowed to demonstrate the validity of the
new process.

The paper is structured as follows. Section 2 introduces a new stochastic process, i.e. called an
extended Poisson process (EPP). Section 3 derives the expected number of failures and the expected
system reliability of the EPP within a given time interval. Section 4 offers the expected cost of a
cycle under maintenance assumptions. Section 5 introduces an approach to estimating the parameters of
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the EPP and gives a numerical example for validating the new process. Section 6 presents concluding
remarks and our further work.

2. Models

DEFINITION 1 (Ross, 1996)

(a) A random variable ξ is said to be stochastically not less (not greater) than another random variable
ζ , denoted by ξ �st ζ (ξ �st ζ ) if Pr(ξ > w) � Pr(ζ > w) (Pr(ξ > w) � Pr(ζ > w)) for all
real w.

(b) A stochastic process {ξn, n = 1, 2, . . .} is said to be stochastically non-decreasing (non-
increasing) if ξn �st ξn+1 (ξn �st ξn+1) for all n = 1, 2, . . . . If ξn <st ξn+1 (ξn >st ξn+1),
the stochastically increasing (decreasing) processes are defined.

DEFINITION 2 (Lam, 1988) A sequence of non-negative independent random variables {ξn, n =
1, 2, . . .} is called a GP if for some u > 0, the distribution of ξn is F(un−1t). The constant u is called
the parameter of the GP.

REMARK 2.1 From Definition 2, it follows that

(1) if u > 1, then {ξn, n = 1, 2, . . .} is stochastically decreasing: ξn � ξn+1,

(2) if 0 < u < 1, then {ξn, n = 1, 2, . . .} is stochastically increasing: ξn � ξn+1 and

(3) if u = 1, then {ξn, n = 1, 2, . . .} is an RP.

We introduce a new process which can be used to describe scenarios with more complicated failure
intensities.

DEFINITION 3 A sequence of non-negative independent random variables ξn, n = 1, 2, . . ., is called an
EPP if for some α + β �= 0, α, β � 0, a � 1 and 0 < b � 1, the cumulative distribution function (cdf)
of ξn is G((αan−1 + βbn−1)t), and G(t) is an exponential cdf, where α, β, a and b are the parameters
of the process.

REMARK 2.2 From Definition 3, it follows that

(1) if a = b = 1, then the EPP is an HPP,

(2) if αan−1 �= 0 and βbn−1 = 0 (or αa = 0 and βbn−1 �= 0) for n = 1, 2, . . ., then {ξn, n =
1, 2, . . .} is a GP,

(3) if αan−1 �= 0 and b = 1, then {ξn, n = 1, 2, . . .} can model the failure pattern of the time from
the random failure period to the wear-out failure period in the bathtub curve,

(4) if a = 1, b < 1 and βbn−1 �= 1, then {ξn, n = 1, 2, . . .} can model the failure pattern of the time
from the random failure period to the wear-out failure period in the bathtub curve and

(5) if αan−1 �= 0, a > 1, 0 < b < 1 and βbn−1 �= 0, then {ξn, n = 1, 2, . . .} can model a system
with a more complicated failure pattern.

Assume that the failure intensity of ξ1 is λ, then the failure intensity of the variable ξn is

hn = (αan−1 + βbn−1)λ. (2.1)

For repairable systems, the Cox–Lewis model (Cox & Lewis, 1966) is a well-known NHPP model with
the rate of occurrence of failures as follows:

v(t) = eα+βt . (2.2)
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Apparently, if we discretise time t to cycle number n, the failure intensity in cycle n should be
hn = eα+βnλ (where α0 = eα and a0 = eβ ). EPP models can therefore be regarded as a discretisation
version of the Cox–Lewis model.

In applications, we can use at most three parameters of α, β, a and b because from the cases (1) to
(4) in Remark 2.2, only three parameters are needed. In case (5) of Remark 2.2, one of the parameters,
α or β, can be set to be 1 as the result is the same as the case when neither of the two parameters is 1.

Let E(ξ1) = λ−1, then
E(ξn) = ((αan−1 + βbn−1)λ)−1. (2.3)

3. Reliability indices

Denote Un = ∑n
i=1 ξi and N (t) = sup{n: Un < t}, and denote the cdf of Un by Gn(t). Therefore,

Gn(t) has a hypoexponential distribution shown as follows:

Gn(t) =
n∑

i=1

Ci,n(1 − exp((αai−1 + βbi−1)λt), (3.1)

where

Ci,n =
n∏

j �=i

αa j−1 + βb j−1

α(a j−1 − ai−1) + β(b j−1 − bi−1)
.

Denote the expected number of failures and the expected system reliability within time interval (T1, T2)
by N (T1, T2) and R(T1, T2), respectively.

PROPOSITION 3.1 The expected number of failures and the expected system reliability within time
interval (T1, T2) are

N (T1, T2) =
∞∑

n=1

n∑
i=1

Ci,n(exp(−(αai−1 + βbi−1)λT1) − exp(−(αai−1 + βbi−1)λT2)) (3.2)

and
R(T1, T2) = exp(−N (T1, T2)), (3.3)

respectively.

Proof. According to the theory of RP, we have

E(N (t)) =
∞∑

n=1

Gn(t). (3.4)

From Definition 3, the rate of occurrence of failures of the process is

ν(t) = dE(N (t))

dt

=
∞∑

n=1

n∑
i=1

Ci,n(αai−1 + βbi−1)λ exp(−(αai−1 + βbi−1)λt). (3.5)
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Then, the expected number of failures within time interval (T1, T2) is

N (T1, T2) = E{N (T2) − N (T1)}

=
∞∑

n=1

{F(T2) − F(T1)}

=
∞∑

n=1

n∑
i=1

Ci,n(exp(−(αai−1 + βbi−1)λT2) − exp(−(αai−1 + βbi−1)λT1)). (3.6)

The expected system reliability in the interval (T1, T2) is

R(T1, T2) = exp(−N (T1, T2)). (3.7)

This proves Proposition 3.1. �

4. Optimal maintenance policies

This section considers two scenarios on maintenance policy: a policy where only corrective maintenance
was conducted, and a policy where both corrective maintenance and preventive maintenance were per-
formed. Some authors refer to CM as ‘repair’, and we will use them interchangeably in what follows.

Let Xn be the survival time after the (n − 1)th repair, and Yn be the repair time after the nth failure,
where Xn and Yn are independent. Assume that the cdfs of Xn and Yn are F((α1ai−1

1 + β1bi−1
1 )t) and

F((α2ai−1
2 + β2bi−1

2 )y), respectively. Denote costs for a replacement and corrective maintenance per
time unit by Cr and Cc, respectively. Denote the business profit per time unit by Cb.

4.1 Maintenance policy 1

Consider a maintenance policy: a system is replaced with a new one if the expected cost reaches the
minimal value in its lifetime. Assume that repair is carried out as soon as the system fails, and the
system is started as soon as the repair is completed. Suppose the replacement time is neglectable.

Assume that there are N − 1 repairs before the system is replaced. Then, the expected time span is

TN =
N∑

n=1

1

(α1ai−1
1 + β1bi−1

1 )λ
+

N−1∑
n=1

1

(α2ai−1
2 + β2bi−1

2 )µ
. (4.1)

The long-run average cost per time unit

1

TN

(
N−1∑
n=1

Cr

(α2ai−1
2 + β2bi−1

2 )µ
−

N∑
n=1

Cb

(α1ai−1
1 + β1bi−1

1 )λ
+ Cp

)
. (4.2)

4.2 Maintenance policy 2

Consider another maintenance policy which has also been considered by Zhang (2002). Zhang (2002)
optimises the long-run average cost when preventive maintenance is considered. The failure processes
after both corrective maintenance and preventive maintenance are assumed to be GP. He assumes that
a preventive maintenance activity is performed as soon as the operating time of a system reaches a pre-
specified time τ , or a corrective maintenance is conducted upon failure within time interval τ , whichever
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FIG. 2. Maintenance policy 2.

occurs first. Zhang (2002) defines a cycle to be the time from the end of a corrective maintenance activity
to the end of the next corrective maintenance activity . A preventive maintenance activity is assumed
to restore the system to be ‘as good as’ the state just when the system is started in the same cycle. A
possible scenario is shown in Fig. 2.

Denote the survival time after the (n − 1)th preventive maintenance by X ′
n . X ′

n should be longer
than the survival time of the system without any preventive maintenance, Xn . Denote the cdf of X ′

n by
Hn(t). The relationship between X ′

n and Xn is shown as follows:
If kτ � t < (k + 1)τ , we have

Hn(t) = Pr{X ′
n < t}

= Pr{kτ + Xnχ{Xn < τ } < t}
= Fn(t − kτ)(1 − Fn(τ ))k, (4.3)

where χ{·} is an indicator function satisfying χ(true) = 1 and χ(false) = 0. The expected value of X ′
n

can be obtained as follows:

E(X ′
n) =

∫ ∞

0
t dHn(t)

=
∞∑

k=0

∫ (k+1)τ

kτ
t (1 − Fn(τ ))k dFn(t − kτ)

=
∞∑

k=0

∫ τ

0
(y + kτ)(1 − Fn(τ ))k dFn(y)

= 1

Fn(τ )

(∫ τ

0
y dFn(y) + τ(1 − Fn(τ ))

)
. (4.4)

Zhang (2002) derives the following result:

E(X ′
n) =

∫ τ

0
y dFn(y) + τ(1 − Fn(τ ))

Fn(τ )
. (4.5)

Compared with (4.4), the result in (4.5) from Zhang (2002) is not correct. Hence, the cost expression
D(N ) in Zhang (2002) should be changed.

Assume that the expected time on a preventive maintenance activity is µp. Denote cost on a prevent-
ive maintenance activity per time unit by Cp, and the number of preventive maintenance activities in
cycle n is Nn . Therefore, the expected time on preventive maintenance activities is µp Nn .
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TABLE 1 Engine failure data

Repair times Mean time between failures (miles)
1st 94000
2nd 70000
3rd 54000
4th 41000
5th 33000

The expected time span of N ′ cycles is

T ′
N =

N ′∑
n=1

(∫ τ

0
y dFn(y) + τ(1 − Fn(τ ))

Fn(τ )
+ 1

(α2an−1
2 + β2bn−1

2 )µ
+ µp Nn

)
. (4.6)

Then we need to minimise the following measure to obtain the optimal cycle N ′ or the optimal time
interval τ .

1

T ′
N

N ′∑
n=1

[
−

(∫ τ

0
y dFn(y) + τ(1 − Fn(τ ))

Fn(τ )

)
Cb + Cc

(α2an−1
2 + β2bn−1

2 )µ
+ µp NnCp + Cr

]
. (4.7)

5. Estimating parameters and a case study

For estimating the parameters in an EPP, both the maximum likelihood algorithm and the least-square
algorithm can be used.

For example, for an EPP {Xn, n = 1, 2, . . .}, we make use of the least-squared algorithm to estimate
the parameters. Assume {xn, n = 1, 2, . . . M} is a sequence of data which is the time to failure in each
cycle. We can minimise the following least-squared function,

M∑
n=1

(xn − [(αn−1 + βbn−1)λ]−1)2, (5.1)

to obtain the estimates of the parameters.
Consider the bus engine failure data set in Table 1 given by Davis (1952). Assume that the repairs

are normal so that the system is not as good as new after each repair. If both the EPP model and the GP
model are used to fit the data, the following results are obtained.

Taking the EPP with parameters a, b and let α = 1, β = 1, the least-squares estimates of a, b and
the failure intensity λ are â = 0.71299, b̂ = 0.00611 and λ̂ = 0.00001214, respectively The residual
mean-squared error (MSE) is 155.43. Taking the GP with parameter u, the least-squares estimates of
λ̂ = 0.000010729, û = 1.3101, with a much larger residual MSE of 404.32.

It shows that an EPP model is more suitable in this example than a GP model.

6. Concluding remarks

The application of GP is rather restricted in the sense that it can only describe a system with either
an increasing or a decreasing failure intensity. The new process introduced in this paper can model
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repairable systems with more complicated failure intensities. The long-run average cost under the two
maintenance policies, a policy where only corrective maintenance is performed and a policy where both
corrective maintenance and preventive maintenance are executed, are derived. We also updated Zhang’s
result (Zhang, 2002) in this paper.

Baker & Christer (1994) pointed out that most models for failure intensity in the reliability literature
were ‘the lack of evident conviction in applicability to real-world situations manifest by no indication of
how the values of model parameters can be determined and no examples of actual applications or case
studies or post-modelling analysis’. The model introduced in this paper addresses these drawbacks by
providing parameter estimation and a case study. Our further work will compare this model with other
models such as HPP and NHPP.

Acknowledgements

The authors would like to thank EPSRC as part of the Innovative Manufacturing Research Centres
initiative for their financial support and our industrial partners (EC Harris, Dytecna, EMCOR Rail,
INBIS and Quorum Logistics Support). Thanks are also due to Dr Wenbin Wang from University of
Salford and the referees for their helpful comments and suggestions, which have resulted in a number
of improvements in the paper.

REFERENCES

ASCHER, H. E. & FEINGOLD, H. (1984a) Repairable System Modelling, Inference, Misconceptions and Their
Causes. New York: Marcel Dekker.

BAKER, R. D. & CHRISTER, A. H. (1994) Review of delay-time or modelling of engineering aspects of mainten-
ance. Eur. J. Oper. Res., 73, 407–422.

BLOCK, H. W., BORGES, W. S. & SAVITS, T. H. (1985) Age-dependent minimal repair. J. Appl. Probab., 20,
851–859.

BROWN, M. & PROSCHAN, F. (1983) Imperfect repair. J. Appl. Probab., 20, 851–859.
COX, D. R. & LEWIS, P. A. (1966) The Statistical Analysis of Series of Events. London: Methuen.
DAVIS, D. J. (1952) An analysis of some failure data. J. Am. Stat. Soc., 47, 113–150.
LAM, Y. (1988) Geometric processes and replacement problem. Acta Math. Appl. Sin., 20, 479–482.
LAM, Y. & ZHANG, Y. L. (2003) A geometric-process maintenance model for a deteriorating system under a

random environment. IEEE Trans. Reliab., 52, 83–88.
LAM, Y., ZHANG, Y. L. & ZHENG, Y. H. (2002) A geometric process equivalent model for a multistate degenera-

tive system. Eur. J. Oper. Res., 142, 21–29.
LINDQVIST, B. H., ELVEBAKK, G. & HEGGLAND, K. (2003) The trend-renewal process for statistical analysis

of repairable systems. Technometrics, 45, 31–44.
PHAM, H. & WANG, H. (1996) Imperfect maintenance. Eur. J. Oper. Res., 94, 425–438.
ROSS, S. M. (1996) Stochastic Processes. New York: Wiley.
SCARF, P. A. (1997) On the application of mathematical models in maintenance. Eur. J. Oper. Res., 99,

493–506.
WANG, H. (2002) A survey of maintenance policies of deteriorating systems. Eur. J. Oper. Res., 139,

469–489.
WANG, H. & PHAM, H. (1996) A quasi renewal process and its applications in imperfect maintenance. Int. J. Syst.

Sci., 27, 1055–1062.
WU, S. M., HUANG, R. & WAN, D. J. (1994) Reliability analysis of a repairable system without being repaired

“as good as new”. Microelectron. Reliab., 34, 357–360.



REPAIR MODEL FOR IMPERFECT MAINTENANCE 243

YANEZ, M., JOGLAR, F. & MODARRES, M. (2002) Generalized renewal process for analysis of repairable systems
with limited failure experience. Reliab. Eng. Syst. Saf., 77, 167–180.

ZHANG, Y. L. (1999) An optimal geometric process model for a cold standby repairable system. Reliab. Eng. Syst.
Saf., 63, 107–110.

ZHANG, Y. L. (2002) A geometric-process repair-model with good-as-new preventive repair. IEEE Trans. Reliab.,
51, 223–228.


