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1 Introdução
O homem moderno demanda cada vez mais a utilização de bens de consumo em seu cotidiano. Esta necessidade desencadeia competitividade entre empresas que por sua vez impulsiona o avanço tecnológico. Neste contexto, o conceito de Confiabilidade deve ser destacado, pois, relaciona-se diretamente com a qualidade dos produtos disponibilizados para os consumidores. 


Estudar o tempo de vida de equipamentos é de fundamental importância, uma vez que este fator determina qualidade e prazos de garantia. Neste caso, a variável de interesse são tempos de falhas dos equipamentos. As principais questões a cerca deste problema são o estabelecimento do tempo médio de vida de um equipamento ou o seu percentual de falhas em um período determinado. As respostas são obtidas por meio da análise da função de confiabilidade da variável que admite modelos paramétricos ou não paramétricos. Os últimos, embora tenham estrutura mais simples, são limitados. É economicamente inviável esperar que ocorram cem por cento de falhas nos produtos em suas respectivas condições naturais de uso, neste caso, a presença do dado censurado inviabiliza o cálculo do tempo médio de vida por meio de um modelo não paramétrico. Os modelos paramétricos, tanto permitem estimar estes tempos, quanto permitem estabelecer os respectivos erros em torno das estimativas.  
Na atualidade, vários autores têm dedicado ao estudo de confiabilidade tendo como objeto modelos teóricos que viabilizam fazer previsões para tempos de falhas em sistemas reparáveis ou não reparáveis. Métodos clássicos e bayesianos têm sido empregados para estimar os parâmetros destes modelos. Sob perspectivas clássicas, Freitas e Colosimo (1997), por exemplo, escrevem sobre sistemas não reparáveis enquanto Rigdon e Basu (2000) apresentam o caso de sistemas reparáveis.  Migon (2001) faz uma análise Bayesiana para Testes de Vida Acelerados usando o método Gibbs Sampler para gerar amostras a posteriori dos parâmetros do modelo empregado. Louzada-Neto, Bolfarine e Rodrigues (2002) fazem uma análise bayesiana para comparar dois modelos Weibull com Dados Acelerados.  Neste artigo, os autores discutem o modelo de Regressão Exponencial como um caso especial do modelo Weibull quando estudam o tempo de vida de equipamentos em um ambiente de estresse. Tojeiro, Louzada-Neto e Bolfarine (2004) fazem uma análise bayesiana para testar tempo de Vida Acelerado para o modelo lei de potencia Exponencial.  Vieira, Achcar e Cancho (2006) usam métodos bayesianos em testes de Vida Acelerados assumindo a distribuição Weibull. Neste trabalho os autores exploram técnicas de Monte Carlo via Cadeias de Markov (MCMC) para estimar os parâmetros do modelo. Tomazella e Fogo (2001) investigam o efeito de reparametrização em inferência bayesiana para o modelo de regressão exponencial. Neste trabalho os autores consideram densidades a priori informativas e não informativas.  Dillenburg (2005) usa estatística bayesiana para estimar a confiabilidade de produto a partir de vendas e falhas ao longo do período de garantia. Montenegro (2006) faz uma abordagem bayesiana para estimar os parâmetros do modelo de tempo de falha acelerada com erro de medida. No mesmo texto a autora utiliza métodos clássicos para estimar e compara os resultados obtidos. 

O objetivo deste trabalho é analisar o emprego da estatística bayesiana para fazer estimativas em estudos de confiabilidade. Embora a literatura apresente estudos realizados sob várias abordagens, neste texto será discutida apenas uma: o uso da reparametrização para função de sobrevivência. A justificativa para o estudo deste caso é o fato que as densidades assimétricas podem comprometer a precisão das inferências assintóticas. Em um primeiro momento, será discutido o uso de uma reparametrização para a função de sobrevivência que melhora a aproximação normal da densidade a posteriori marginal. Na seqüência o modelo será formulado em conformidade com as reparametrizações apresentadas. O trabalho apresentará também os vários passos para a realização de uma análise bayesiana, pois, deve-se obter função de verossimilhança, determinar distribuições a priori, obter uma amostra dos dados e finalmente calcular a distribuição a posteriori.   Deve-se destacar que este último passo pode ser difícil.
2 Desenvolvimento 


Nestas próximas seções serão apresentados e analisados os trabalhos realizados por Tomazella e Fogo (2001). A subseção (2.1) apresenta justificativas para empregar as técnicas bayesianas no estudo das estimativas de confiabilidade. A subseção (2.2) apresenta os efeitos de reparametrização em inferência bayesiana para a função de sobrevivência. A subseção (2.3) apresenta reparametrizações especificas e os respectivos cálculos. A subseção (2.4) apresenta a definição do modelo a partir da função exponencial. A subseção (2.5) apresenta uma análise bayesiana para o modelo formulado. A seção (2.6) apresentará, a título de exemplo, uma aplicação envolvendo a teoria discutida e a seção (3) apresentará as conclusões.   
2.1  Estatística bayesiana em estudo de confiabilidade
Segundo Dillenburg (2005) o emprego de métodos bayesianos em confiabilidade permite combinar informações já conhecidas, como por exemplo, predições, testes e avaliações de engenharia com informações recentes obtidas em campo ou a partir de novos testes. Neste caso, a estimativa de confiabilidade baseia-se em toda a informação disponível, tanto subjetiva quanto objetiva. Entretanto, caso o pesquisador não tenha informações sobre os parâmetros, pode-se considerar uma distribuição a priori não informativa de Jeffreys (Box & Tiao, 1973). Assumindo que o modelo exponencial descreve adequadamente a distribuição dos tempos de vida (Feigl & Zelen, 1965), segundo Tomazella e Fogo (2001) é comum à existência de fatores que influenciam o tempo de sobrevivência, as covariáveis. Neste caso, são usados os modelos de regressão o que viabiliza a aplicação de técnicas bayesianas como um facilitador para solução dos problemas.  Um outro fator fundamental que pode justificar o uso de técnicas bayesianas em inferência é a obtenção de melhores estimadores.  
2.2 Efeito de reparametrização em inferência bayesiana para a função de sobrevivência. 
O tempo de sobrevivência de um equipamento, em linhas gerais, está relacionado com vários fatores como, por exemplo, as condições de uso.  Tomazella e Fogo (2001) analisam as relações entre os fatores que influenciam o tempo médio de sobrevivência, também chamados de covariáveis, por meio de um modelo de regressão exponencial proposto por (Feigl & Zelen, 1965). No trabalho, os autores estudam o comportamento de uma variável T, tempo de sobrevivência, como função de uma covariável 
[image: image1.wmf]l

. O objetivo é apresentar os efeitos de reparametrizações quando se usa distribuições a posteriori marginais da função de sobrevivência no processo de inferência.  Neste texto serão apresentadas duas transformações com propósito de destacar a transformação potência de Box e Cox (1964). A principal justificativa para se usar tal método é que este facilita a obtenção de uma família inversível de transformações que inclui a logito. Os resultados que serão apresentados foram obtidos a partir do modelo de regressão assumindo distribuição exponencial, entretanto, é possível a generalização para outros modelos de regressão considerando outras distribuições para dados de sobrevivência. 
2.3 Reparametrização para a função de sobrevivência
Considere que o parâmetro de interesse seja dado pela função de sobrevivência 
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. Algumas famílias paramétricas para proporções podem ser exploradas com objetivo de aproximar a função de verossimilhança de 
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 com a função de probabilidade normal.  A seguir será apresentada uma modificação da transformação que foi introduzida por Guerrero e Johnson (1982). Considere um 
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 fixo,
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Uma grande vantagem da transformação apresentada em 
[image: image7.wmf](1)

 é a facilidade com que pode ser invertida. Para o caso desta transformação garantir vantagens computacionais ou melhorar a qualidade das inferências, os resultados obtidos poderão ser apresentados na escala original sem maiores problemas. A partir de manipulações algébricas básicas obtém-se: 
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Para a transformação 
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 deve-se obter um valor de 
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 que ofereça uma boa aproximação da função de verossimilhança para 
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com a distribuição normal. Os autores sugerem considerar a derivada terceira padronizada para obter este valor para o parâmetro
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No caso, 
[image: image14.wmf]``
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 e 
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l

são, respectivamente, as derivadas de segunda e terceira ordem do logaritmo da função de verossimilhança avaliadas no estimador de máxima verossimilhança 
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 será obtido igualando 
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 avaliado no ponto 
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 a zero. Segundo os autores as densidades construídas usando a verossimilhança obtida a partir da expressão 
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 ou da expressão 
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combinadas com o valor obtido para o parâmetro 
[image: image22.wmf]l

 produzirão curvas simétricas e aproximadamente normais. Este fator justifica o trabalho proposto, pois, para curvas aproximadamente normais moda e mediana estão próximas.    
2.4 Formulação do Modelo

Nesta subseção será apresentado o modelo exponencial denotando o tempo de sobrevivência. O modelo apresentará uma covariável associada ao tempo, e a partir desta adequação serão construídas a função de sobrevivência e as funções de verossimilhança. Considere a função de densidade de probabilidade (fdp) onde T, tempo de sobrevivência, é uma variável aleatória não-negativa. 
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No caso, 
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. Trata-se de uma reparametrização usada pelos autores, porém, proposta por Feigl e Zelen. Fazendo as devidas substituições o modelo apresentará a seguinte forma:
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A função de sobrevivência em um dado tempo 
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 é dada pelo modelo apresentado abaixo,
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Na função 
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 destaca-se que 
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é um valor especificado para a covariável. Na seqüência será determinada a função de verossimilhança para os parâmetros 
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Considere a transformação 
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 da covariável, dado por:
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A partir do cálculo do 
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 e da obtenção da expressão de 
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em função de 
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, ou seja, da adequação de 
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, obtém-se a função de verossimilhança:
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Na próxima subseção será apresentada uma análise bayesiana para a função de densidade de probabilidade construída para a variável aleatória: tempo de sobrevivência.  Funções de densidades a priori serão associadas à função de verossimilhança de 
[image: image43.wmf](5)

 e posteriormente calculadas as densidades marginais a posteriori para o parâmetro de interesse.   
2.5 Uma análise bayesiana no contexto de sobrevivência

Segundo Iglesias (1996), o essencial para se fazer inferência em contexto bayesiano é a distribuição a posteriori. Deve-se destacar que todos os aspectos relacionados a inferências dependem desta distribuição. Em algumas situações a posteriori pode ser obtida facilmente, porém, na maioria dos casos ela é gerada via métodos computacionais. Para o trabalho discutido neste texto, os autores usam como alternativa uma aproximação obtida pelo método de Laplace. Neste caso, a integral que aparece no cálculo da posteriori apresenta dificuldades para solução analítica. 


De modo geral, a forma de obter a distribuição a posteriori pode ser apresentada por meio do esquema: 
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Na subseção seguinte será apresentada uma análise para o modelo 
[image: image45.wmf](5)

 por meio do uso de uma função de densidade a priori não – informativa. 

2.5.1 Distribuição a priori Não – Informativa


Em princípio, os autores assumem que o pesquisador não tem informações sobre os parâmetros. No caso, utilizam uma distribuição a priori Não – Informativa de Jefreys (Box & Tiao, 1973) para os parâmetros 
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Considerando a função de densidade conjunta apresentada em 
[image: image48.wmf](5)

 e sua respectiva função de verossimilhança 
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 a densidade a posteriori para 
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Os autores consideram uma distribuição a priori para a função de sobrevivência transformada apresentada em 
[image: image52.wmf](8)

. Neste caso, trata-se de uma distribuição a priori para 
[image: image53.wmf].
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A partir da distribuição a priori acima e a função de verossimilhança 
[image: image55.wmf](9)

 obtém-se a posteriori para 
[image: image56.wmf].
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Integrando a expressão acima
[image: image58.wmf](13)

 

 em ralação a 
[image: image59.wmf]2

f

, obtém-se a densidade marginal a posteriori para R. Como existe dificuldade para resolver analiticamente a integral, utilizou-se como alternativa para aproximar os resultados o método de Laplace. 
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Considerando a reparametrização para a função de sobrevivência  apresentada pela expressão 
[image: image61.wmf](1)

 

 e sua respectiva inversa apresentada em 
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 obtém-se a densidade conjunta para 
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A densidade a posteriori marginal para 
[image: image66.wmf]GJ
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 é dada a partir da integral da expressão 
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 com respeito ao parâmetro 
[image: image68.wmf]2

f

. Da mesma forma que no caso anterior, o resultado será aproximado pelo método de Laplace.   
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Na próxima subseção serão apresentados resultados referentes a distribuições a priori Informativas. No caso, os autores apresentam sem justificar, a distribuição Log-Gama Negativa para a função de sobrevivência R e a distribuição normal com média zero e variância um para o parâmetro 
[image: image70.wmf]2

f

. 
2.5.2 Distribuição a priori Informativa


Considere 
[image: image71.wmf]2

f

 

e

 

R

independentes. Considere que a função de sobrevivência esteja modelada conforme distribuição Log-Gama e o parâmetro 
[image: image72.wmf]2

f

 tenham distribuição normal com média zero e variância um (0,1). No caso, a densidade a priori conjunta para 
[image: image73.wmf]2
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R

 é dada por:
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A densidade a posteriori conjunta de 
[image: image75.wmf]2
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é dada por,
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Integrando a expressão anterior em relação ao parâmetro 
[image: image77.wmf]2

f

 obtém-se a densidade a posteriori marginal para R. O resultado também será aproximado pelo método de Laplace.
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Considerando a reparametrização para a função de sobrevivência  apresentada pela expressão 
[image: image79.wmf](1)

 e sua respectiva inversa apresentada em 
[image: image80.wmf](2)

  obtém-se a densidade marginal 
[image: image81.wmf]GJ

f

.
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A integral acima foi aproximada pelo autor utilizando o mesmo método anterior. A partir destes resultados é possível fazer inferências sobre a função de sobrevivência, como por exemplo, obter a moda a posteriori. 
2.6 Aplicações
Nesta seção será reproduzido parcialmente o exemplo apresentado pelos autores. Estes consideram pacientes com leucemia com variável com variável concomitante associada a contagem de glóbulos brancos.

· 
[image: image83.wmf]x

: logaritmo da contagem de glóbulos brancos,
· 
[image: image84.wmf]1

q

: representa o tempo médio de sobrevida em pacientes com a contagem de glóbulos brancos igual a10. 000 unidades,

· 
[image: image85.wmf]2

q

: representa o ganho no tempo médio de sobrevivência correspondendo a um acréscimo no percentual da contagem de glóbulos brancos,

A figura 1 apresenta os gráficos das densidades a posteriori marginais, obtidas pelo método de Laplace através das expressões abaixo. A expressão
[image: image86.wmf](14)

 

 refere-se à posteriori construída a partir de uma priori não informativa.
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A expressão 
[image: image88.wmf](19)

 

 refere-se à posteriori para R onde foi utilizada uma distribuição a priori informativa.
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Observa-se que os gráficos apresentados acima são completamente assimétricos.  Como já mencionado o objetivo deste trabalho é utilizar uma transformação que seja facilmente inversível para que aproxime as densidades a posteriori da normal. 

Considerando a transformação de Gerrero e Johnson apresentada pela expressão 
[image: image91.wmf](2)

, 

[image: image92.wmf](

)

(

)

(2)

         

,

)

(

,

1

1

1

1

1

l

f

f

f

f

l

l

GJ

GJ

GJ

GJ

R

=

+

+

+

=

 

onde

 


possibilitou  determinar o valor de 
[image: image93.wmf]l

 que fornecesse uma boa aproximação normal. O valor foi obtido igualando à expressão 
[image: image94.wmf](3)

 a zero. Trata-se da derivada terceira padronizada do logaritmo da função de verossimilhança.   
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3 Conclusões
O estudo de análise de sobrevivência, mais especificamente a inferência sobre o tempo de vida de pessoas ou coisas, fica facilitado quando se modela os dados a partir de uma função paramétrica. Desta forma, a função ganha posição de destaque neste contexto, pois, todos os resultados vêm dela. Os autores apresentam uma reparametrização para o modelo de regressão assumindo a distribuição exponencial. Segundo eles os resultados podem ser estendidos para outros modelos de regressão considerando outras distribuições para os dados de sobrevivência.

Pode-se perceber pelas figuras apresentadas que reparametrização muda completamente a forma da distribuição e consequentemente torna os resultados das inferências mais precisos. No caso, sendo a reparametrização facilmente inversível, faz a adequação dos resultados para a situação investigada.   
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