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Resumo

O foco deste trabalho é a definição de poĺıticas ótimas de manutenção preventiva em função da
condição dos equipamentos. Por poĺıtica ótima, entendemos um conjunto de regras de apoio à
decisão de intervir em um determinado equipamento. O objetivo é minimizar o custo total de
operação do equipamento ao longo do tempo (horizonte infinito).
Consideramos o tempo discreto e, para cada peŕıodo k, é estimado o estado do equipamento
(e.g. via inspeção) para decidir se cabe mantê-lo em funcionamento (ação de continuar) ou
efetuar sua manutenção preventiva (ação de parar). Utilizaremos como ferramenta de análise a
programação dinâmica estocástica, uma vez que esta nos permite captar as incertezas inerentes
ao problema e fornecer um conjunto de decisões contingenciadas na observação do equipamento.
Uma das caracteŕısticas do nosso modelo é que captamos o fato de a observação do equipamento
poder não refletir o estado real do mesmo. Em outras palavras, ilustramos o fato de os decisores
poderem estar agindo em função de uma informação imprecisa.
Para adequar os parâmetros do modelo para analisar um problema espećıfico, utilizamos uma
técnica baseada nos Modelos de Markov Ocultos. Isto permite que ajustemos os parâmetros
a partir das bases de dados existentes em sistemas de automação industrial encontrados nas
industrias. Validaremos nossa metodologia com alguns dados numéricos experimentais.

Palavras-chave: poĺıtica de manutenção preventiva, decisão sob incerteza, Programação Dinâmica-
Estocástica, Controle Ótimo, Modelos de Markov Ocultos.
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1 Introdução

As atividades ligadas à manutenção de equipamentos fabris são fortemente responsáveis, senão
essenciais, ao bom funcionamento de uma indústria. Dentre essas atividades destacam-se os
programas de manutenção preventiva que visam otimizar o uso e a operação dos equipamentos
através da realização de intervenções planejadas. O objetivo destas intervenções é reparar os
equipamentos antes que os mesmos falhem, garantindo, portanto, o funcionamento regular e
permanente da produção. Se por um lado a necessidade da manutenção preventiva é clara, por
outro a programação de tais intervenções não é tão evidente. Uma grande dificuldade reside na
elaboração de um planejamento que determine quando realizar a manutenção preventiva.
Por sua importância prática, este problema vem motivando estudos tanto por parte do setor
produtivo, em função da demanda existente, quanto da academia, interessada na construção de
ferramentas para lidar com estes problemas. De maneira geral, o planejamento da manutenção
preventiva é feito com base:

• No tempo (manutenção preventiva programada), sendo realizada em intervalos de tem-
pos pré-estabelecidos (para detalhes ver, por exemplo, [Smith, 1993, Gertsbakh, 2000,
Moubray, 1993, Sellitto, 2005]); ou

• Na condição do equipamento (manutenção preventiva preditiva), onde procura-se acom-
panhar o desgaste dos equipamentos, através da análise de sintomas e/ou de uma esti-
mativa do estado de degradação, visando determinar o momento adequado de realizar a
intervenção (para detalhes ver, por exemplo, [Chen et al., 2003, Chiang and Yuan, 2001,
Gertsbakh, 2000, Chen and Trivedi, 2005]).

É importante salientar que estes enfoques são complementares e não concorrentes. Como vere-
mos na próxima seção, cada enfoque apresenta certas vantagens e desvantagens para lidar com
peculiaridades de algumas situações reais.
Neste trabalho, propomos uma metodologia para formular poĺıticas de manutenção preventiva
em equipamentos cuja condição pode ser estimada. Esta estimação pode ser ruidosa (não per-
feita), já que a hipótese de conhecimento da condição real do equipamento quase sempre não é
fact́ıvel. Uma poĺıtica dita a forma com que as ações devem ser escolhidas ao longo do tempo
em função das informações coletadas. Estas poĺıticas são ótimas sob o ponto do vista do custo
de operação do equipamento (em geral inversamente proporcional à degradação) e ao risco de
não operação (lucro cessante) decorrente da interrupção do mesmo, em caso de falha1. Em sis-
temas onde pode-se observar a situação do equipamento antes decidir sobre a ação a ser tomada,
acreditamos que o uso desta informação pode propiciar uma abordagem mais robusta e eficiente
para a decisão de intervir ou não no mesmo.

2 Descrição e delimitação do problema

Poĺıticas em manutenção preventiva podem ser classificadas em duas classes [Chen et al., 2003]:
a 1◦ classe lida com sistemas onde não é feita uma inspeção dos equipamentos. Assim, esta classe
diz respeito a equipamentos onde são posśıveis apenas dois estados: “falhado”/“não-falhado”.
Como exemplo desta poĺıtica, destaca-se a determinação da periodicidade de manutenção pre-
ventiva baseada na confiabilidade dos equipamentos. Na 2◦ classe, uma inspeção sobre o estado
do equipamento é posśıvel, de forma não intrusiva, e esta informação pode ser utilizada na
formulação da decisão de intervir ou não no equipamento. Vários autores entendem esta 2◦

classe como manutenção preditiva (ver, e.g., [Smith, 1993, Pinto and Xavier, 2001]). A seguir
detalharemos melhor estas duas classes.

1Entendemos como falha a incapacidade do equipamento de executar as operações as quais lhe foram desig-
nadas. Alguns trabalhos referenciam esta falha como “falha operacional”.
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2.1 Poĺıticas de manutenção preventiva baseadas no tempo (programada)

Neste enfoque busca-se definir, para um dado equipamento, a frequência na qual se deve realizar a
manutenção preventiva no mesmo, visando geralmente atingir um ńıvel mı́nimo de confiabilidade
desejado. Em outros casos, visa-se minimizar o custo total de operação ao longo tempo. Neste
caso, este custo diz respeito ao lucro cessante decorrente da não operação do equipamento, em
caso de falha. Note que os intervalos entre as intervenções não precisam necessariamente iguais.
Como exemplo desta abordagem, podemos citar os trabalhos de [Sellitto, 2005, Motta, 1999,
Ulysséa, 2002].
Esta abordagem geralmente é baseada em modelos de confiabilidade, partindo da análise do
tempo de operação até a falha (também conhecido como tempo de vida), modelando-os se-
gundo uma distribuição de probabilidade apropriada, caracterizando desta forma a confiabili-
dade do equipamento. Portanto, a teoria da confiabilidade classifica um dado equipamento como
“bom”/“ruim” (i.e. “não-falhado”/“falhado”), não admitindo estados intermediários. De posse
do modelo, parte-se então para a definição da periodicidade das intervenções segundo um ńıvel
mı́nimo de confiabilidade requerido, que é a entrada da análise, de forma iterativa:

1. Fixa-se uma periodicidade arbitrária;

2. Avalia-se a probabilidade de falha do equipamento;

3. Caso o ńıvel de confiabilidade encontrado seja diferente daquele desejado, retorna-se a (2)
diminuindo ou aumentando o intervalo entre as intervenções.

Em muitas situações práticas é imposśıvel, ou economicamente inviável, estimar o estado de
degradação do equipamento. Neste caso, classificamos-o apenas como “não-falhado”/“falhado”.
Em tais situações, esta abordagem apresenta-se como a mais adequada, pois ela possui como
parâmetros apenas os tempos de operação até a falha, dados que são normalmente coletados
e armazenados nas empresas. Entretando, em alguns contextos, pode-se observar o estado de
degradação dos equipamentos de maneira não intrusiva (i.e. sem interferir na sua condição).
Neste caso, esta informação, mesmo incerta, pode ser utilizada na tomada de decisão sobre a
ação que deve ser escolhida.

2.2 Poĺıticas de manutenção preventiva baseadas na condição (preditiva)

Esta classe de poĺıticas busca explorar o fato de que a maior parte das falhas desenvolve-se
ao longo do tempo, não ocorrendo instantaneamente, mas sim decorrente de um processo de
envelhecimento que evolui lentamente, em estágios, no qual o equipamento vai se deteriorando
e, conseqüentemente, alterando suas caracteŕısticas até alcançar o estado de falha. Assim, a
inclusão de estados intermediários de degradação é mais facilmente implementável através desta
técnica.
[Smith, 1993] salienta que a manutenção preventiva-preditiva permite um aproveitamento melhor
do peŕıodo de vida útil dos equipamentos, tendo em vista que procura-se realizar as ações mais
próximo da ocorrência da falha funcional dos mesmos. De fato, uma diferença entre a abordagem
baseada na condição e daquela baseada no tempo é que na segunda realiza-se a intervenção
independentemente das condições do equipamento.
A partir da estimação da condição do equipamento, busca-se portanto determinar se deve-se ou
não realizar a manutenção no mesmo. Tem-se portanto a situação apresentada abaixo (figura
1). Note que esta figura enfatiza a idéia que a condição percebida de um equipamento pode ser
diferente da real.
A leitura sobre a condição do equipamento pode ser feita periodicamente, por exemplo, no
momento da tomada de decisão de intervir ou não. Observe ambas abordagens (programada e
preditiva) não contemplam a descoberta de falhas ocultas, que segundo [Smith, 1993], faz parte
de outro objeto de estudo: a manutenção detectiva (e.g. testes nos equipamentos).
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Figura 1: O processo de decisão sobre a intervenção.

2.3 O problema estudado

Nosso problema consiste em definir poĺıticas de manutenção preventiva baseadas na condição dos
equipamentos que minimizem o seu custo total de operação no horizonte de tempo considerado.
Este custo é composto por:

• Custo de operação: representa estritamente o custo de operação do equipamento. Geral-
mente este custo é função do estado de degradação real do equipamento: assim, quanto
mais degradado estiver o equipamento, maior será seu custo de operação;

• Custo de falha: este custo quantifica o lucro cessante incorrido pela não operação do
equipamento.

O tempo é discreto (amostrado) e, a cada instante, obtém-se uma estimação do estado de deteri-
oração do equipamento. Esta estimação pode ser obtida, por exemplo, através de um parâmetro
de controle (e.g. ńıvel de vibração) e assume-se que o mesmo é diretamente relacionado com o
modo de falha em estudo. Uma poĺıtica é composta por diversas regras, onde cada regra dita a
forma com que as ações devem ser escolhidas ao longo do tempo, estabelecendo portanto uma
poĺıtica de controle que define, a partir das leituras da condição, quando intervir equipamento.

3 Modelo matemático

Considere um equipamento que possui múltiplos estágios de deterioração 1, 2, . . . , L, ordenados
do estado perfeito (1) até o estado completamente deteriorado (L). A evolução ao longo do
tempo da condição do equipamento segue um processo estocástico. Sob a hipótese de que o
estado futuro depende apenas do estado presente (i.e., o passado encontra-se “embutido” no
presente), esta evolução caracteriza um processo estocástico markoviano. Assim, assume-se que
o próximo estado de deterioração do equipamento (k+1) depende apenas do seu estado presente
(k).
Seja {xk} uma cadeia de Markov2, onde k = 0, 1, 2, . . . . Utiliza-se aqui xk para denotar o
estado do equipamento (ou seja: a condição real do mesmo) no peŕıodo k, e {xk} para modelar
o deterioramento do equipamento ao longo do tempo. Assim, o espaço de estado de xk é
S = 1, 2, . . . , L, com a probabilidade associada de transição pij definida como: pij = Pr[xk+1 =
j|xk = i] = Pr[x1 =j|x0 = i], pois consideramos que a cadeia é estacionária.
Admitindo que o equipamento só pode ter sua condição melhorada mediante uma intervenção,
podemos escrever as probabilidades de transição como:

pij =
{

Pr[xk+1 =j|xk = i] se j ≥ i,
0 caso contrário.

(1)

Esta transição (equação 1) reflete o fato de que, uma vez degradado, o equipamento não pode ter
sua condição melhorada ao longo do tempo (envelhecimento). Naturalmente,

∑L
j=i Pr[xk+1 =

j|xk = i] deve ser igual a 1, para todo i. Além disso é, necessário o conhecimento da distribuição
2Por conveniência usaremos {xk} minúsculo no lugar do maiúsculo, como comumente utilizado.
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Figura 2: O processo de evolução da condição do equipamento. As probabilidades de transição
foram omitidas por simplificação.

de probabilidade dos estados no estágio inicial, ou seja x0. Vamos denotar a distribuição prob-
abilidades do estado inicial do equipamento por ω. De posse destas informações, podemos
estruturar a evolução da condição real do equipamento ao longo do tempo, como ilustrado na
figura 2.
Como assumimos que não possúımos informação completa sobre a condição do equipamento, a
cada estágio, devemos fazer a estimação da mesma. Assim, constrúımos a medida da condição zk,
onde zk possui sua distribuição de probabilidades condicionada a xk (estado atual). Denotaremos
o espaço de estados de zk por Z = {1̂, 2̂, . . . , L̂}, representando o conjunto de leituras posśıveis.
A distribuição de probabilidades da leitura da condição é denotada por bxk

(zk), representando
a probabilidade de ler-se zk dado que a condição real é xk. A figura abaixo ilustra este fato.

Figura 3: O processo de evolução da condição real do equipamento (xk) e estimação dessa
condição (zk).

Define-se o vetor de informações Ik para cada estágio k. Este vetor representa todas as leituras
até o instante k e é definido recursivamente pela equação abaixo:

{
I0 = z0

Ik = (Ik−1, zk) k = 1, 2, 3, . . . .
(2)

Exemplo: suponha que xk pode assumir dois valores: bom(B) ou ruim(R). Assim, zk também as-
sumirá dois valores: Aparentemente bom(AB) e aparentemente ruim(AR). Assim, a distribuição
de zk pode ser caracterizada com as probabilidades: Pr[zk = AB|xk = B], Pr[zk = AB|xk = R]
(“falso positivo”), Pr[zk =AR|xk =B] (“falso negativo”) e Pr[zk =AR|xk =R].

Pode-se portanto caracterizar o modelo do equipamento por λ = (A,B, ω), onde:

• A: probabilidades de transição pij ;

• B: probabilidades de leitura bx(z);
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• ω: distribuição de probabilidades do estado inicial x0.

3.1 Considerações iniciais

Sob estas hipóteses vamos construir um procedimento de apoio à decisão, utilizando a pro-
gramação dinâmica estocástica como ferramenta de análise, com o objetivo de captar as in-
certezas inerentes ao problema e fornecer um conjunto de decisões contingenciadas na observação
da condição do equipamento. Considera-se duas posśıveis ações gerenciais tomadas em cada in-
stante k (denotadas por uk): continuar a operar o equipamento ou parar e efetuar a manutenção
preventiva.
Este procedimento consiste nos passos a seguir.

3.1.1 Discretização e classificação da condição do equipamento

Deve-se determinar, com base na situação analisada3, o número de posśıveis estados do equipa-
mento (L), as correspondentes leituras, bem como sua classificação a ser feita a partir da ob-
servação do parâmetro de controle, caso este seja cont́ınuo.

Exemplo: classificou-se um equipamento em 4 posśıveis estados S = {1, 2, 3, 4}, indo de “tão
bom quanto novo” a “completamente falhado”. O parâmetro de controle foi classificado como
segue:

Parâmetro de controle observado zk Significado denotado
0 ≤ θk < 0.3 1̂ Deter. mı́nima percebida

0.3 ≤ θk < 0.7 2̂ Deter. razoável percebida
0.7 ≤ θk < 1 3̂ Grande deter. percebida

θk ≥ 1 4̂ Equipamento falhado

Tabela 1: Exemplo de classificação das observações.

3.1.2 Definição de uma função de custo do equipamento por peŕıodo

Como já mencionado, consideramos uma função de custo composta pelo custo de operação e de
falha. Ela é calculada em função da condição do equipamento (xk) e da ação tomada (uk):

• Para xk ∈ 1, . . . , L− 1:

– Para uk = I (interromper a operação): g(xk, uk) representa o custo de manutenção
preventiva (incluindo o lucro cessante decorrente da não operação do equipamento
durante a manutenção), que pode ser escrito em função da condição real do sistema
(xk): normalmente, quanto mais deteriorado, maior será o custo da intervenção;

– Para uk = P (continuar a operação): g(xk, uk) representa o custo de operação do
equipamento, que também pode ser escrito em função da condição real do sistema
(xk): novamente, quanto mais deteriorado, geralmente maior será o custo da operação;

• Para xk = L (falhado):

– Para uk = I (interromper a operação): g(xk, uk) representa o custo de manutenção
corretiva do equipamento (incluindo o lucro cessante decorrente da não operação do
equipamento durante a manutenção);

3Uma metodologia para tal classificação fará objeto de estudos futuros.
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– Para uk = P (continuar a operação): g(xk, uk) representa o custo de não operação
do equipamento, ou seja: o lucro cessante. Note que, geralmente, espera-se que esta
decisão não seja ótima, pois ela implica em não mais operar o equipamento;

3.1.3 Dinâmica da tomada de decisão

A tomada de decisão é feita no ińıcio de cada peŕıodo e pode ser resumida nas etapas abaixo:

Figura 4: Dinâmica da tomada de decisão.

• No instante 0 o equipamento começa a funcionar com estado inicial x0 (que, como descrito,
pode ser aleatório), efetua-se a leitura da sua condição z0 e decide-se a continuar a operação
do mesmo (ação u0);

• No instante 1 o equipamento encontra-se no estado x1, efetua-se a leitura da sua condição
z1 e decide-se a continuar a operação do mesmo (ação u1);

• No instante k o equipamento encontra-se no estado xk, efetua-se a leitura da sua condição
zk e decide-se a parar o equipamento e efetuar a manutenção (ação uk). Após a intervenção,
o equipamento retorna ao estado inicial x0. Ou seja, o equipamento retorna ao instante 0
e reinicia-se sua operação.

Estamos portanto interessados determinar o ńıvel máximo que a condição estimada (zk) pode
atingir (threshold). A partir deste ńıvel, torna-se mais interessante economicamente interromper
a operação e efetuar a manutenção.

3.2 Métodos computacionais

Representando o custo total equipamento ao longo do tempo por J , deseja-se encontrar uma
poĺıtica π tal que J∗(x0) = minJπ(x0), sendo Jπ(x0) (custo da poĺıtica π a partir do estado
inicial x0) igual a

Jπ(x0) = lim
N→∞

E

[
N∑

k=0

g(xk, uk)

]
. (3)

Uma poĺıtica (ou lei de controle) consiste na seqüência de funções µk que fazem o mapeamento
da informação dispońıvel (Ik) e a decisão a ser tomada, ou seja: µk : Ik 7→ uk.
Problemas em programação dinâmica-estocástica em horizonte finito são resolvidos pela lógica
retroativa (backward) [Bertsekas, 1995, Puterman, 1994, Stern, 2006]: parte-se do estágio ter-
minal (denotado por N) em direção ao estágio inicial. A cada estágio k e para cada cenário
posśıvel Ik, coleta-se qual a decisão ótima uk a ser tomada, obtendo-se µk. Ao aplicar este
procedimento em todos os estágios, obtém-se uma poĺıtica π que é composta pelo conjunto de
regras de decisão µ0, . . . , µN−1, µN (ver equação 4):

JN (IN ) = min
uN

{E[g(xN , uN )|IN , uN ]}, ∀IN , (4)

Jk(Ik) = min
uk

{E[g(xk, uk)|Ik, uk] + E [Jk+1(Ik, zk+1)|Ik, uk]}, ∀Ik, k = N − 1, . . . , 0.
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Apesar de simples, geralmente este procedimento apresenta um elevado custo computacional,
sobretudo quando N é grande (o que é conhecido como “maldição da dimensionalidade”). En-
tretanto, esta abordagem não é aplicável a problemas de horizonte infinito (N →∞) como este.
Neste caso, é necessário recorrer a algoritmos mais sofisticados. Neste trabalho vamos utilizar a
técnica de iteração de valor (value iteration).

3.2.1 Algoritmo de iteração de valor

A iteração de valor deriva do prinćıpio de otimalidade de Bellman (para mais detalhes ver
[Sutton and Barto, 1998, Bertsekas, 1995, Puterman, 1994]). Seu objetivo é obter, para cada
posśıvel estado x, uma aproximação para o menor custo total de operação do equipamento ao
longo do tempo. Formalmente, a iteração de valor requer um número infinito de iterações para
convergir. Na prática, entretanto, sob algumas hipóteses, o método pode ser truncado em tempo
finito obtendo um valor muito próximo. Caso estas hipóteses não forem satisfeitas, o método
retornará J∗(x0) =∞, ∀x0 ∈ S.

Proposição 1 (Convergência do algoritmo de iteração de valor). O algoritmo de iteração de
valor converge se as seguintes hipóteses forem satisfeitas:

• com probabilidade 1 a ação uk = I será tomada com k finito,

• após a ação uk = I ser tomada, o sistema retorna ao estado inicial: xk+1 = x0.

Demonstração. Uma demonstração formal foge ao escopo deste trabalho e fará objeto de tra-
balhos futuros. Entretanto, pode-se verificar que estas condições são satisfeitas sempre que

1. g(xk = L, uk = P ) > g(xk 6= L, uk = P ),

2. o estado L é alcançável e pLL = 1,

for válido (como neste caso).

A iteração de valor consiste a calcular uma aproximação de J∗(x0) através das equações recur-
sivas

Jk+1(x) = min
u

E[g(xk+1, u) + Jk(xk+1)|xk = x, uk = u] (5)

= min
u

∑
x′

pxx′(u)(g(x′, u) + Jk(x′)),

para todo x ∈ S. A medida que k cresce, |Jk+1(x) − Jk(x)| → 0, ∀x ∈ S (veja ilustração na
figura 5). A partir da equação 5, propõe-se o algoritmo 1.
A poĺıtica π representa uma poĺıtica estacionária (π = {µ}) e determińıstica (para um dado x,
deve-se tomar uma decisão u). Através do algoritmo de iteração de valor, obtém-se o threshold
da condição real do equipamento, ou seja: o valor limite que a condição real do equipamento
pode atingir com a ação de continuar a operação (uk = P ). Logo, a partir de tal valor, é mais
interessante interromper a operação e efetuar a manutenção (ação uk = I).
Entretanto, a função µ obtida faz o mapeamento entre o x e u. Para estimar o estado real a
partir das informações coletadas, pode-se utilizar

Pr[xk = x|Ik] =
Pr[xk = x, Ik]

Pr[Ik]
. (6)
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Figura 5: Ilustração da iteração de valor.

Algoritmo 1 Algoritmo de iteração de valor
1: J(x)← 0, ∀x ∈ S . ińıcio com J arbitrário
2: repita
3: ∆← 0
4: para todo x ∈ S faça . para todo estado
5: v ← J(x)
6: J(x)← min

uk

∑
x′∈S

pxx′(u)(g(x′, u) + Jk(x′))

7: ∆← max(∆, |v − J(x)|)
8: enquanto ∆ < θ . precisão desejada
9: retorne µ(x) = arg min

uk

∑
x′∈S

pxx′(u)(g(x′, u) + J(x′))

3.3 Exemplo numérico

Visando validar nossa metodologia, vamos aplicar a técnica proposta no seguinte problema4:
deseja-se monitorar um equipamento que está sujeito à vibração. Através do sistema de in-
formação obtém-se, a cada hora, medidas da vibração do equipamento. Sabe-se que a condição
do equipamento é diretamente proporcional à vibração submetida e deseja-se monitorar a vi-
bração para determinar quando efetuar a manutenção no equipamento.
A equipe de engenharia propõe que a condição seja dividida em quadro estados:

Parâmetro de controle observado zk

0 ≤ θk < 0.3 1̂
0.3 ≤ θk < 0.7 2̂
0.7 ≤ θk < 1 3̂

θk ≥ 1 4̂ (aparentemente falhado)

Tabela 2: Exemplo numérico: classificação do parâmetro de controle.

O estado inicial do equipamento é x0 = 1 e as probabilidades de transição da condição pij e de
estimação da condição bx(z) são as seguintes:

4Os experimentos foram feitos em um computador com processador Intel R© Pentium R© 4 3.06GHz e 2 GB de
memória RAM, utilizando Windows R© XP SP2. O algoritmo foi implementado em MatLab R©.
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Figura 6: Exemplo numérico: probabilidades de transição e leitura.

A função de custo g(xk, uk) considerada:

Ação (uk)
Estado real (xk) Prosseguir Interromper

1 1 5
2 1.1 5
3 1.21 5

4 (falhado) 20 10

Tabela 3: Exemplo numérico: classificação do parâmetro de controle.

Avaliamos a técnica nos seguintes cenários:

1. I2 = (z0, z1, z2) = (1̂, 1̂, 1̂): foram necessárias 20 iterações até o algoritmo de iteração de
valor convergir (utilizando θ = 0.01, tempo computacional despreźıvel):

Obteve-se as seguintes condições limites de operação:
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Estado real (x) Decisão ótima (u) Custo esperado até a interrupção da operação
1 Prosseguir 23.5711
2 Prosseguir 25.9251
3 Interromper 27.3264
4 Interromper 42.3264

A partir do vetor de informações, estima-se a condição atual do equipamento (usando 6)
e, combinando com a tabela anterior, obtém-se a “esperança” do custo esperado:

Estado real (x) Probabilidade Custo esperado Decisão ótima
1 0.986468 23.2483 Prosseguir
2 0.013532 0.3551 Prosseguir
3 0.000000 0.0000 Interromper
4 0.000000 0.0000 Interromper

Deve-se escolher a decisão que está relacionada ao maior custo esperado. Portanto, a ação
ótima u2 é prosseguir a operação.

2. I5 = (z0, z1, z2, z3, z4, z5) = (1̂, 1̂, 1̂, 2̂, 2̂, 2̂): as condições limites de operação são as mesmas
do exemplo anterior, pois as probabilidades de transição e de leitura bem como os custos
são os mesmos. Entretanto a estimação da condição atual do equipamento muda, pois
o vetor de informações é diferente. Assim, conclui-se que a ação ótima u5 é continuar a
operação.

Estado real (x) Probabilidade Custo esperado Decisão ótima
1 0.001706 0.0402 Prosseguir
2 0.982791 25.4790 Prosseguir
3 0.015503 0.4236 Interromper
4 0.000000 0.0000 Interromper

3. Considere o mesmo I5, mas que o custo de manutenção preventiva é de 2 (e não mais 5),
ou seja: g(xk, uk = I) = 2, ∀xk 6= L. Nesta caso, como esperado, as condições limites de
operação são diferentes:

Estado real (x) Decisão ótima (u) Custo esperado até a interrupção da operação
1 Prosseguir 14.9948
2 Interromper 15.8947
3 Interromper 15.8947
4 Interromper 33.8947

O que implica, a partir do vetor de informações, na seguinte estimação:

Estado real (x) Probabilidade Custo esperado Decisão ótima
1 0.001706 0.0256 Prosseguir
2 0.982791 15.6212 Interromper
3 0.015503 0.2464 Interromper
4 0.000000 0.0000 Interromper

Assim, conclui-se que a ação ótima u5 é interromper a operação. Gerencialmente, este
cenário ilustra que, quanto menor for o custo de manutenção preventiva (g(xk, uk =
I), ∀xk 6= L), maior será a tendência de parar o equipamento.
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4 Inferência dos parâmetros do modelo

Até o momento admitimos o conhecimento dos parâmetros de entrada λ = (A,B, ω) do modelo.
Entretanto, estes parâmetros não são conhecidos na prática. Embora em alguns casos estes
parâmetros possam ser determinados via ensaios de engenharia, o mais interessante é estimá-
los com dados de campo, que geralmente são coletados pelas industrias (principalmente as de
processo, através de sistemas PIMS - Sistemas de Gerenciamento de Informações de Planta).
A estimação de λ pode ser vista como um Modelo de Markov Oculto5 do terceiro tipo: a escolha
de tais parâmetros pode ser considerada um problema de otimização, onde busca-se estimar os
parâmetros que proporcionam as observações mais próximas das observações coletadas.
Seja O um grupo de N conjuntos de observações6, ou seja: O = {O1, O2, . . . , ON}. Cada
conjunto On é composto por K + 1 observações da condição do equipamento, sempre iniciando
do instante que o equipamento iniciou a operar (k=0) e terminando quando a ação escolhida for
interromper a operação, ou seja: On = {z0, z1, z2, . . . , zK}. Assim, O representa todo o histórico
de dados dispońıvel para ser usado para construir estimadores das quantidades de interesse. Um
exemplo deste histórico é apresentado na tabela 4.

O z0 z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11

O1 1̂ 1̂ 1̂ 2̂ 1̂ 2̂ 3̂ 3̂ 3̂ 4̂
O2 1̂ 1̂ 1̂ 1̂ 2̂ 2̂ 2̂ 3̂ 3̂ 3̂ 4̂
O3 1̂ 1̂ 1̂ 2̂ 2̂ 2̂ 3̂ 3̂ 3̂
O4 1̂ 1̂ 1̂ 1̂ 2̂ 2̂ 2̂ 3̂ 2̂ 3̂ 3̂ 4̂

Tabela 4: Exemplo de observações coletadas.

Portanto, ajustar o modelo em função dos dados significa maximizar Pr[O|λ]. O padrão de
escolha de λ comumente utilizado é o de máxima verossimilhança. Logo, busca-se encontrar os
valores dos parâmetros que maximizam a probabilidade de se observar os dados coletados. Foi
proposto na literatura algoritmo conhecido como Baum-Welch7 que lida com este problema.

4.1 Algoritmo de Baum-Welch

Formalmente, o Baum-Welch é um algoritmo do tipo generalized expectation-maximization (GEM).
Ele é capaz de calcular as estimativas de máxima verossimilhança a partir apenas dos dados O
(conhecidos como dados de treinamento) e de um valor a priori dos parâmetros de interesse
(e.g. estimadas pela engenharia) como, por exemplo, foi apresentado na seção 3.3.
Sejam ω̄x, p̄ij e b̄x(z) estimadores para ωx, pij e bx(z) respectivamente. Estes estimadores são
baseados no prinćıpio freqüentista, como segue:

• ω̄x = freqüência esperada no estado x no tempo 0

• p̄ij = número esperado de transições do estado i para j
número esperado de transições partindo do estado i

• b̄x(z) = número esperado de vezes no estado x onde observou-se z
número esperado de vezes no estado x

Para cada conjunto de obsevações On, define-se as seguintes variáveis:

• αk(x) = Pr[z0, z1, z2, . . . , zk, xk = x|λ]
5Para mais detalhes sobre a teoria de Modelos de Markov Ocultos ver, e.g., [Dugad and Desai, 1996,

Rabiner, 1989].
6Obs.: não confundir com o vetor de informações Ik.
7Baum, L. E., Petrie, T., Soules G., and Weiss, N. (1970). A maximization technique occurring in the statistical

analysis of probabilistic functions of Markov chains. The Annals of Mathematical Statistics, vol. 41.
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• βk(x) = Pr[zk+1, zk+2, . . . , zK , xK = x|λ]

• γk(x) = Pr[xk = x|On, λ] =
Pr[xk = x,On|λ]

Pr[On|λ]
=

αk(x)βk(x)
Pr[On|λ]

• ξk(i, j) = Pr[xk = i, xk+1 = j|On, λ] =
Pr[xk = i, xk+1 = j, On|λ]

Pr[On|λ]
=

αk(i)pijbj(zk+1)βk+1(j)
Pr[On|λ]

Pode-se demonstrar que:

•
K−1∑
k=0

γk(x) = número esperado de transições a partir de x

•
K−1∑
k=0

ξk(i, j) = número esperado de transições de i para j

E, finalmente, a re-estimação de Baum-Welch é escrita como:

• ω̄x = γ0(x)

• p̄ij =
K−1∑
k=0

ξk(i, j)/
K−1∑
k=0

γk(i)

• b̄x(z) =
K∑

k=0
s.a. zk=z

γk(x)/
K∑

k=0

γK(x)

A partir destas equações chegamos ao algoritmo seguinte:

Algoritmo 2 Algoritmo de Baum-Welch
1: λ0 ← (A,B, ω) . ińıcio com λ arbitrário (valores a priori)
2: para todo n ∈ 1..N faça . para cada conjunto de observações
3: ω̄x ← γ0(x), ∀x ∈ S

4: p̄ij ←
K−1∑
k=0

ξk(i, j)/
K−1∑
k=0

γk(i), ∀i ∈ S,∀j ∈ S

5: b̄x(z)←
K∑

k=0
s.a. zk=z

γk(x)/
K∑

k=0

γk(x), ∀x ∈ S, ∀z ∈ Z

6: λn ← (ω̄, p̄ij , b̄x(z))

7: retorne λN

4.2 Exemplo numérico

Visando ilustrar como a estimação dos parâmetros, vamos aplicar a técnica no exemplo consid-
erado na seção 3.3: a partir dos valores estimados pela engenharia (figura 6), deseja utilizar um
banco de dados para melhorar as estimativas. Considere os seguintes cenários8:
1.

O z0 z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11 z12 z13 z14 z15 z16 z17

O1 1̂ 1̂ 1̂ 1̂ 1̂ 2̂ 1̂ 2̂ 2̂ 2̂ 2̂ 2̂ 3̂ 3̂ 3̂ 3̂ 3̂ 3̂
O2 1̂ 1̂ 1̂ 1̂ 1̂ 2̂ 1̂ 2̂ 3̂ 2̂ 2̂ 2̂ 3̂ 3̂ 3̂ 3̂ 3̂ 4̂
O3 1̂ 1̂ 1̂ 1̂ 1̂ 1̂ 1̂ 2̂ 2̂ 2̂ 2̂ 2̂ 2̂ 3̂ 3̂ 3̂ 3̂ 4̂
O4 1̂ 1̂ 1̂ 1̂ 1̂ 1̂ 1̂ 2̂ 2̂ 2̂ 2̂ 2̂ 2̂ 3̂ 3̂ 3̂ 3̂ 4̂

8Por simplificação, vamos considerar que os conjuntos de observações On possuem o mesmo tamanho.
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A re-estimação gerada pelo Baum-Welch é a seguinte:
- Probabilidades de transição:

xk+1

xk 1 2 3 4
1 p11 = 0.84738 p12 = 0.15262 p13 = 0 p14 = 0
2 p21 = 0 p22 = 0.83327 p23 = 0.16673 p24 = 0
3 p31 = 0 p32 = 0 p33 = 0.70808 p34 = 0.29192
4 p41 = 0 p42 = 0 p43 = 0 p44 = 1

- Probabilidades de leitura:

zk

xk 1 2 3 4
1 b1(1) = 0.95118 b1(2) = 0.048819 b1(3) = 0 b1(4) = 0
2 b2(1) = 0.044653 b2(2) = 0.90535 b2(3) = 0.050002 b2(4) = 0
3 b3(1) = 0 b3(2) = 0 b3(3) = 0.99997 b3(4) = 0, 00003
4 b4(1) = 0 b4(2) = 0 b4(3) = 0.6742 b4(4) = 0.3258

Pode-se dizer, neste caso, que os novos parâmetros λ não são tão discrepantes dos valores iniciais,
apesar das estimativas de b4(3) e b4(4) serem bastante diferentes das iniciais.

2.

O z0 z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11 z12 z13 z14 z15

O1 1̂ 1̂ 1̂ 2̂ 1̂ 2̂ 2̂ 2̂ 3̂ 3̂ 3̂ 3̂ 3̂ 4̂ 4̂ 4̂
O2 1̂ 1̂ 1̂ 1̂ 2̂ 1̂ 2̂ 3̂ 2̂ 2̂ 3̂ 3̂ 3̂ 3̂ 4̂ 4̂
O3 1̂ 1̂ 1̂ 1̂ 1̂ 2̂ 2̂ 2̂ 2̂ 3̂ 3̂ 3̂ 3̂ 4̂ 3̂ 4̂
O4 1̂ 1̂ 1̂ 1̂ 1̂ 2̂ 2̂ 2̂ 3̂ 3̂ 3̂ 3̂ 3̂ 3̂ 4̂ 4̂

A re-estimação gerada pelo Baum-Welch é a seguinte:
- Probabilidades de transição:

xk+1

xk 1 2 3 4
1 p11 = 0.79435 p12 = 0.20565 p13 = 0 p14 = 0
2 p21 = 0 p22 = 0.74851 p23 = 0.25149 p24 = 0
3 p31 = 0 p32 = 0 p33 = 0.76721 p34 = 0.23279
4 p41 = 0 p42 = 0 p43 = 0 p44 = 1

- Probabilidades de leitura:

zk

xk 1 2 3 4
1 b1(1) = 0.92234 b1(2) = 0.07766 b1(3) = 0 b1(4) = 0
2 b2(1) = 0.066624 b2(2) = 0.84812 b2(3) = 0.085252 b2(4) = 0
3 b3(1) = 0 b3(2) = 0 b3(3) = 0.99998 b3(4) = 0, 00002
4 b4(1) = 0 b4(2) = 0 b4(3) = 0.21477 b4(4) = 0.78523

Acreditamos que neste caso que os novos parâmetros λ estão mais distantes daqueles obtidos
anteriormente, indicando que estes dados denodam uma deterioração mais elevada.

14



5 Conclusões e futuros trabalhos

Neste trabalho discutimos a formulação de poĺıticas de manutenção preventiva baseada na
condição dos equipamentos. A idéia central foi construir um conjunto de regras de apoio à
decisão de intervir (ou não) em um determinado equipamento com o objetivo de minimizar o
custo total de operação do equipamento no horizonte de tempo considerado. A motivação para
esta abordagem está relacionada a utilização da informação, mesmo que incompleta ou parcial,
a respeito da condição do equipamento – o que reflete a realidade encontrada pelos gestores
responsáveis pela tomada de decisão. Um ponto que acreditamos relevante neste trabalho é que
apresentamos técnicas para a estimação dos parâmetros do modelo proposto a partir de dados
de campo.
Pretende-se continuar esta pesquisa em duas frentes. A primeira será o refinamento da técnica de
resolução do modelo proposto (algoritmos para programação dinâmica-estocástica em horizonte
infinito). A segunda, ainda como passos futuros desta pesquisa, pretendemos realizar uma
comparação entre esta técnica e aquelas baseadas na Teoria da Confiabilidade, com o intuito de
inferir a respeito do ganho em usar ou não a informação sobre a condição do equipamento na
decisão de intervir ou não.
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