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Resumo

O foco deste trabalho ¢é a definicao de politicas 6timas de manutencao preventiva em fungao da
condicao dos equipamentos. Por politica étima, entendemos um conjunto de regras de apoio a
decisao de intervir em um determinado equipamento. O objetivo é minimizar o custo total de
operagao do equipamento ao longo do tempo (horizonte infinito).

Consideramos o tempo discreto e, para cada periodo k, é estimado o estado do equipamento
(e.g. via inspecao) para decidir se cabe manté-lo em funcionamento (a¢do de continuar) ou
efetuar sua manutengao preventiva (agao de parar). Utilizaremos como ferramenta de andlise a
programacao dinamica estocdstica, uma vez que esta nos permite captar as incertezas inerentes
ao problema e fornecer um conjunto de decisdes contingenciadas na observacao do equipamento.
Uma das caracteristicas do nosso modelo é que captamos o fato de a observagao do equipamento
poder nao refletir o estado real do mesmo. Em outras palavras, ilustramos o fato de os decisores
poderem estar agindo em fungao de uma informagao imprecisa.

Para adequar os parametros do modelo para analisar um problema especifico, utilizamos uma
técnica baseada nos Modelos de Markov Ocultos. Isto permite que ajustemos os parametros
a partir das bases de dados existentes em sistemas de automacao industrial encontrados nas
industrias. Validaremos nossa metodologia com alguns dados numéricos experimentais.

Palavras-chave: politica de manutencao preventiva, decisao sob incerteza, Programacao Dinamica-
Estocéstica, Controle Otimo, Modelos de Markov Ocultos.



1 Introducao

As atividades ligadas & manutencao de equipamentos fabris sao fortemente responsaveis, senao
essenciais, ao bom funcionamento de uma industria. Dentre essas atividades destacam-se os
programas de manutengao preventiva que visam otimizar o uso e a operagao dos equipamentos
através da realizacao de intervencgoes planejadas. O objetivo destas intervencoes é reparar os
equipamentos antes que os mesmos falhem, garantindo, portanto, o funcionamento regular e
permanente da producao. Se por um lado a necessidade da manutengao preventiva é clara, por
outro a programacao de tais intervengoes nao é tao evidente. Uma grande dificuldade reside na
elaboracao de um planejamento que determine quando realizar a manutencao preventiva.

Por sua importancia pratica, este problema vem motivando estudos tanto por parte do setor
produtivo, em fungéo da demanda existente, quanto da academia, interessada na construcao de
ferramentas para lidar com estes problemas. De maneira geral, o planejamento da manutencao
preventiva é feito com base:

e No tempo (manutengao preventiva programada), sendo realizada em intervalos de tem-
pos pré-estabelecidos (para detalhes ver, por exemplo, [Smith, 1993 |Gertsbakh, 2000,
Moubray, 1993} [Sellitto, 2005]); ou

e Na condigao do equipamento (manutengao preventiva preditiva), onde procura-se acom-
panhar o desgaste dos equipamentos, através da andlise de sintomas e/ou de uma esti-
mativa do estado de degradacao, visando determinar o momento adequado de realizar a
intervencao (para detalhes ver, por exemplo, [Chen et al., 2003, |Chiang and Yuan, 2001},
Gertsbakh, 2000, |[Chen and Trivedi, 2005]).

E importante salientar que estes enfoques sao complementares e nao concorrentes. Como vere-
mos na proxima secao, cada enfoque apresenta certas vantagens e desvantagens para lidar com
peculiaridades de algumas situagoes reais.

Neste trabalho, propomos uma metodologia para formular politicas de manutencao preventiva
em equipamentos cuja condi¢ao pode ser estimada. Esta estimagao pode ser ruidosa (nao per-
feita), j& que a hipétese de conhecimento da condic@o real do equipamento quase sempre nao é
factivel. Uma politica dita a forma com que as agoes devem ser escolhidas ao longo do tempo
em funcao das informacoes coletadas. Estas politicas sao étimas sob o ponto do vista do custo
de operagao do equipamento (em geral inversamente proporcional a degradagao) e ao risco de
nao operagao (lucro cessante) decorrente da interrupgao do mesmo, em caso de falhaﬂ Em sis-
temas onde pode-se observar a situacao do equipamento antes decidir sobre a acao a ser tomada,
acreditamos que o uso desta informacao pode propiciar uma abordagem mais robusta e eficiente
para a decisao de intervir ou nao no mesmo.

2 Descricao e delimitacao do problema

Politicas em manutencao preventiva podem ser classificadas em duas classes [Chen et al., 2003):
a 1° classe lida com sistemas onde nao é feita uma inspecao dos equipamentos. Assim, esta classe
diz respeito a equipamentos onde sdo possiveis apenas dois estados: “falhado” /“nao-falhado”.
Como exemplo desta politica, destaca-se a determinacao da periodicidade de manutencao pre-
ventiva baseada na confiabilidade dos equipamentos. Na 2° classe, uma inspegao sobre o estado
do equipamento é possivel, de forma nao intrusiva, e esta informacao pode ser utilizada na
formulacao da decisdo de intervir ou nao no equipamento. Vdérios autores entendem esta 2°
classe como manutengao preditiva (ver, e.g., [Smith, 1993| [Pinto and Xavier, 2001]). A seguir
detalharemos melhor estas duas classes.

!Entendemos como falha a incapacidade do equipamento de executar as operacdes as quais lhe foram desig-
nadas. Alguns trabalhos referenciam esta falha como “falha operacional”.



2.1 Politicas de manutencgao preventiva baseadas no tempo (programada)

Neste enfoque busca-se definir, para um dado equipamento, a frequéncia na qual se deve realizar a
manutencao preventiva no mesmo, visando geralmente atingir um nivel minimo de confiabilidade
desejado. Em outros casos, visa-se minimizar o custo total de operagao ao longo tempo. Neste
caso, este custo diz respeito ao lucro cessante decorrente da nao operacao do equipamento, em
caso de falha. Note que os intervalos entre as intervencoes nao precisam necessariamente iguais.
Como exemplo desta abordagem, podemos citar os trabalhos de [Sellitto, 2005, Motta, 1999,
Ulysséa, 2002].

Esta abordagem geralmente é baseada em modelos de confiabilidade, partindo da andlise do
tempo de operacao até a falha (também conhecido como tempo de vida), modelando-os se-
gundo uma distribuicao de probabilidade apropriada, caracterizando desta forma a confiabili-
dade do equipamento. Portanto, a teoria da confiabilidade classifica um dado equipamento como
“bom” /“ruim” (i.e. “nado-falhado”/“falhado”), ndo admitindo estados intermediarios. De posse
do modelo, parte-se entao para a definigao da periodicidade das intervengoes segundo um nivel
minimo de confiabilidade requerido, que ¢é a entrada da andlise, de forma iterativa:

1. Fixa-se uma periodicidade arbitraria;
2. Avalia-se a probabilidade de falha do equipamento;

3. Caso o nivel de confiabilidade encontrado seja diferente daquele desejado, retorna-se a (2)
diminuindo ou aumentando o intervalo entre as intervencoes.

Em muitas situagoes praticas é impossivel, ou economicamente inviavel, estimar o estado de
degradacao do equipamento. Neste caso, classificamos-o apenas como “nao-falhado” /“falhado”.
Em tais situacoes, esta abordagem apresenta-se como a mais adequada, pois ela possui como
parametros apenas os tempos de operacao até a falha, dados que s@o normalmente coletados
e armazenados nas empresas. Entretando, em alguns contextos, pode-se observar o estado de
degradagao dos equipamentos de maneira nao intrusiva (i.e. sem interferir na sua condigao).
Neste caso, esta informacao, mesmo incerta, pode ser utilizada na tomada de decisao sobre a
acao que deve ser escolhida.

2.2 Politicas de manutencao preventiva baseadas na condigao (preditiva)

Esta classe de politicas busca explorar o fato de que a maior parte das falhas desenvolve-se
ao longo do tempo, nao ocorrendo instantaneamente, mas sim decorrente de um processo de
envelhecimento que evolui lentamente, em estégios, no qual o equipamento vai se deteriorando
e, conseqilentemente, alterando suas caracteristicas até alcancar o estado de falha. Assim, a
inclusao de estados intermediarios de degradacgao é mais facilmente implementavel através desta
técnica.

[Smith, 1993] salienta que a manutencao preventiva-preditiva permite um aproveitamento melhor
do periodo de vida 1til dos equipamentos, tendo em vista que procura-se realizar as agoes mais
préximo da ocorréncia da falha funcional dos mesmos. De fato, uma diferenca entre a abordagem
baseada na condigcao e daquela baseada no tempo é que na segunda realiza-se a intervencao
independentemente das condigoes do equipamento.

A partir da estimacao da condicao do equipamento, busca-se portanto determinar se deve-se ou
nao realizar a manutengdo no mesmo. Tem-se portanto a situagao apresentada abaixo (figura
. Note que esta figura enfatiza a idéia que a condigao percebida de um equipamento pode ser
diferente da real.

A leitura sobre a condicao do equipamento pode ser feita periodicamente, por exemplo, no
momento da tomada de decisado de intervir ou nado. Observe ambas abordagens (programada e
preditiva) nao contemplam a descoberta de falhas ocultas, que segundo [Smith, 1993], faz parte
de outro objeto de estudo: a manutengao detectiva (e.g. testes nos equipamentos).



Continuar a operar
Deterioracéo Deterioragéo
real do 2 percebida ou
equipamento estimada
Parar o equipamento

Leitura | Decisao

Figura 1: O processo de decisao sobre a intervencao.

2.3 O problema estudado

Nosso problema consiste em definir politicas de manutencao preventiva baseadas na condigao dos
equipamentos que minimizem o seu custo total de operagao no horizonte de tempo considerado.
Este custo é composto por:

e Custo de operacao: representa estritamente o custo de operagao do equipamento. Geral-
mente este custo é funcao do estado de degradacao real do equipamento: assim, quanto
mais degradado estiver o equipamento, maior sera seu custo de operagao;

e Custo de falha: este custo quantifica o lucro cessante incorrido pela nao operacdao do
equipamento.

O tempo ¢ discreto (amostrado) e, a cada instante, obtém-se uma estimagao do estado de deteri-
oracao do equipamento. Esta estimagao pode ser obtida, por exemplo, através de um parametro
de controle (e.g. nivel de vibracao) e assume-se que o mesmo ¢é diretamente relacionado com o
modo de falha em estudo. Uma politica é composta por diversas regras, onde cada regra dita a
forma com que as acoes devem ser escolhidas ao longo do tempo, estabelecendo portanto uma
politica de controle que define, a partir das leituras da condicao, quando intervir equipamento.

3 Modelo matematico

Considere um equipamento que possui multiplos estagios de deterioragao 1,2, ..., L, ordenados
do estado perfeito (1) até o estado completamente deteriorado (L). A evolucao ao longo do
tempo da condicao do equipamento segue um processo estocastico. Sob a hipdétese de que o
estado futuro depende apenas do estado presente (i.e., o passado encontra-se “embutido” no
presente), esta evoluc@o caracteriza um processo estocastico markoviano. Assim, assume-se que
o préximo estado de deterioragao do equipamento (k+1) depende apenas do seu estado presente
Seja {xx} uma cadeia de Markovﬂ onde £ = 0,1,2,.... Utiliza-se aqui x; para denotar o
estado do equipamento (ou seja: a condigao real do mesmo) no periodo k, e {x}} para modelar
o deterioramento do equipamento ao longo do tempo. Assim, o espago de estado de zjp é
S =1,2,...,L, com a probabilidade associada de transi¢ao p;; definida como: p;; = Pr[zj41=
jlxx=1i] = Pr[x1 =j|zo=1], pois consideramos que a cadeia é estacionaria.

Admitindo que o equipamento s6 pode ter sua condicdo melhorada mediante uma intervencao,
podemos escrever as probabilidades de transicao como:

Pii = Pr[mk—l—l:ﬂxk:i] se j > 1, (1)
Y 0 caso contrario.

Esta transicao (equagéo reflete o fato de que, uma vez degradado, o equipamento nao pode ter
sua condigao melhorada ao longo do tempo (envelhecimento). Naturalmente, ZJL:Z Pr[ziiq =
Jjlzr=1] deve ser igual a 1, para todo i. Além disso é, necessario o conhecimento da distribuicao

2Por conveniéncia usaremos {zx} mintsculo no lugar do maitisculo, como comumente utilizado.



Figura 2: O processo de evolucao da condicao do equipamento. As probabilidades de transicao
foram omitidas por simplificagao.

de probabilidade dos estados no estagio inicial, ou seja xg. Vamos denotar a distribuicao prob-
abilidades do estado inicial do equipamento por w. De posse destas informagoes, podemos
estruturar a evolugao da condicao real do equipamento ao longo do tempo, como ilustrado na
figura

Como assumimos que nao possuimos informagao completa sobre a condicao do equipamento, a
cada estagio, devemos fazer a estimacao da mesma. Assim, construimos a medida da condigao zy,
onde zj possui sua distribui¢ao de probabilidades condicionada a zj, (estado atual). Denotaremos
o espaco de estados de z, por Z = {i, 2. ,ﬁ}, representando o conjunto de leituras possiveis.
A distribuigao de probabilidades da leitura da condicao é denotada por by, (z1), representando
a probabilidade de ler-se z dado que a condicao real é xp. A figura abaixo ilustra este fato.

CuOnl
SRORS)

Figura 3: O processo de evolugao da condi¢ao real do equipamento (xj) e estimagao dessa
condigao (zg).

Define-se o vetor de informacgoes I para cada estdgio k. Este vetor representa todas as leituras
até o instante k e é definido recursivamente pela equagao abaixo:

Iy = 2z
{ I = (Iy—1,2,) k=1,2,3,.... (2)

Exemplo: suponha que zj pode assumir dois valores: bom(B) ou ruim(R). Assim, z;, também as-
sumird dois valores: Aparentemente bom(AB) e aparentemente ruim(AR). Assim, a distribuigao
de zj pode ser caracterizada com as probabilidades: Pr[zy = AB|zy = B], Pr[z; = AB|z; = R)
(“falso positivo”), Pr[zy = AR|z, = B| (“falso negativo”) e Pr[z; = AR|x,=R].

Pode-se portanto caracterizar o modelo do equipamento por A = (A, B,w), onde:

e A: probabilidades de transicao p;;;

e B: probabilidades de leitura b, (2);



e w: distribuicao de probabilidades do estado inicial x.

3.1 Consideragoes iniciais

Sob estas hipdteses vamos construir um procedimento de apoio a decisdo, utilizando a pro-
gramacao dinamica estocastica como ferramenta de analise, com o objetivo de captar as in-
certezas inerentes ao problema e fornecer um conjunto de decisoes contingenciadas na observacao
da condicao do equipamento. Considera-se duas possiveis agoes gerenciais tomadas em cada in-
stante k (denotadas por ug): continuar a operar o equipamento ou parar e efetuar a manutengao
preventiva.

Este procedimento consiste nos passos a seguir.

3.1.1 Discretizacgao e classificagao da condigao do equipamento

Deve-se determinar, com base na situagao anadisadaE]7 o numero de possiveis estados do equipa-
mento (L), as correspondentes leituras, bem como sua classificagdo a ser feita a partir da ob-
servacao do parametro de controle, caso este seja continuo.

Exemplo: classificou-se um equipamento em 4 possiveis estados S = {1,2,3,4}, indo de “tao
bom quanto novo” a “completamente falhado”. O parametro de controle foi classificado como

segue:
Parametro de controle observado | zx Significado denotado

0<0,<0.3 1 | Deter. minima percebida

0.3 <0, <0.7 2 | Deter. razoavel percebida

0.7<60, <1 3 | Grande deter. percebida
0, >1 4 Equipamento falhado

Tabela 1: Exemplo de classificacao das observacoes.

3.1.2 Definicao de uma fung¢ao de custo do equipamento por periodo

Como ja mencionado, consideramos uma fungao de custo composta pelo custo de operagao e de
falha. Ela é calculada em fungao da condicao do equipamento (xj) e da agao tomada (uy):

e Parazpel,...,L—1:

— Para uj, = I (interromper a operagao): g(zy,uy) representa o custo de manutengao
preventiva (incluindo o lucro cessante decorrente da nao operagao do equipamento
durante a manutengao), que pode ser escrito em fungao da condigao real do sistema
(zx): normalmente, quanto mais deteriorado, maior serd o custo da intervencao;

— Para up = P (continuar a operacdo): g(xy,ux) representa o custo de operacao do
equipamento, que também pode ser escrito em funcao da condigao real do sistema
(zx): novamente, quanto mais deteriorado, geralmente maior serd o custo da operagao;

e Para z;, = L (falhado):

— Para uj = I (interromper a operagao): g(zy,uy) representa o custo de manutengao
corretiva do equipamento (incluindo o lucro cessante decorrente da nao operagao do
equipamento durante a manutengao);

3Uma metodologia para tal classificacio fard objeto de estudos futuros.



— Para up, = P (continuar a operagao): g(xy,uy) representa o custo de nao operagao
do equipamento, ou seja: o lucro cessante. Note que, geralmente, espera-se que esta
decisdo nao seja étima, pois ela implica em nao mais operar o equipamento;

3.1.3 Dinémica da tomada de decisao

A tomada de decisao é feita no inicio de cada periodo e pode ser resumida nas etapas abaixo:

I | |
| | | >
0 1 (.. k tempo em funcionamento

Figura 4: Dinadmica da tomada de decisao.

e No instante 0 o equipamento comeca a funcionar com estado inicial zy (que, como descrito,
pode ser aleatério), efetua-se a leitura da sua condigao z( e decide-se a continuar a operagao
do mesmo (agao ug);

e No instante 1 o equipamento encontra-se no estado x1, efetua-se a leitura da sua condigao
z1 e decide-se a continuar a operagao do mesmo (agao uq);

e No instante k£ o equipamento encontra-se no estado xj, efetua-se a leitura da sua condigao
21, e decide-se a parar o equipamento e efetuar a manutencao (agao ug). Apds a intervengao,
o equipamento retorna ao estado inicial xg. Ou seja, o equipamento retorna ao instante 0
e reinicia-se sua operacao.

Estamos portanto interessados determinar o nivel maximo que a condicao estimada (zx) pode
atingir (threshold). A partir deste nivel, torna-se mais interessante economicamente interromper
a operacao e efetuar a manutencao.

3.2 Métodos computacionais

Representando o custo total equipamento ao longo do tempo por J, deseja-se encontrar uma
politica 7 tal que J*(z¢) = min Jr(xp), sendo Jr(xp) (custo da politica 7 a partir do estado
inicial xg) igual a

N
Jr(wo) = lim B [Z g(ﬂ%,uk)] : (3)

k=0

Uma politica (ou lei de controle) consiste na seqiiéncia de fungoes py que fazem o mapeamento
da informagao disponivel (I;) e a decisao a ser tomada, ou seja: py : I — u.

Problemas em programagcao dinamica-estocdstica em horizonte finito sao resolvidos pela légica
retroativa (backward) |[Bertsekas, 1995 [Puterman, 1994, [Stern, 2006]: parte-se do estégio ter-
minal (denotado por N) em dire¢ao ao estdgio inicial. A cada estdgio k e para cada cendrio
possivel Ij, coleta-se qual a decisdo 6tima uy a ser tomada, obtendo-se pg. Ao aplicar este
procedimento em todos os estdgios, obtém-se uma politica ™ que é composta pelo conjunto de
regras de decis@o po, ..., uN—1, 4N (Ver equagao :

IN(IN) = TELD{E[QWN,UN)UN,UN]}, VIn, (4)
Je(I) = min{Blg(@e, we) le, k] + B [Jis1 (T zoe)l e wel}, - VIk, k=N —1,...,0.

7



Apesar de simples, geralmente este procedimento apresenta um elevado custo computacional,
sobretudo quando N é grande (o que é conhecido como “maldigao da dimensionalidade”). En-
tretanto, esta abordagem nao é aplicavel a problemas de horizonte infinito (N — 00) como este.
Neste caso, é necessario recorrer a algoritmos mais sofisticados. Neste trabalho vamos utilizar a
técnica de iteragao de valor (value iteration).

3.2.1 Algoritmo de iteragao de valor

A iteragdo de valor deriva do principio de otimalidade de Bellman (para mais detalhes ver
[Sutton and Barto, 1998, Bertsekas, 1995, [Puterman, 1994]). Seu objetivo é obter, para cada
possivel estado x, uma aproximagao para o menor custo total de operagao do equipamento ao
longo do tempo. Formalmente, a iteragao de valor requer um ntimero infinito de iteragoes para
convergir. Na pratica, entretanto, sob algumas hipéteses, o método pode ser truncado em tempo
finito obtendo um valor muito préximo. Caso estas hipdteses nao forem satisfeitas, o método
retornard J*(zg) = oo, Vg€ S.

Proposicao 1 (Convergéncia do algoritmo de iteragao de valor). O algoritmo de iteragdao de
valor converge se as sequintes hipdteses forem satisfeitas:

e com probabilidade 1 a acdo ur = I serd tomada com k finito,

e apds a acdo up = I ser tomada, o sistema retorna ao estado inicial: xp+1 = xg.

Demonstracao. Uma demonstracao formal foge ao escopo deste trabalho e fara objeto de tra-
balhos futuros. Entretanto, pode-se verificar que estas condigoes sao satisfeitas sempre que

1. g(xx = Lyuy, = P) > g(xp # L,ux, = P),
2. o estado L ¢é alcancavel e prp, = 1,
for vélido (como neste caso). O

A iteracao de valor consiste a calcular uma aproximacao de J*(z¢) através das equagoes recur-
sivas

Jpg1(x) = min Elg(zrg1,u) + Jp(zpq1) |26 = 2, up = 4] (5)

= min Y prar(u)(g(a’, u) + Ju(2)),

para todo x € S. A medida que k cresce, |Ji11(x) — Ji(x)| — 0, Vz € S (veja ilustracao na
figura . A partir da equagao [5|, propoe-se o algoritmo

A politica 7 representa uma politica estacionaria (m = {u}) e deterministica (para um dado z,
deve-se tomar uma decisao u). Através do algoritmo de iteragao de valor, obtém-se o threshold
da condigao real do equipamento, ou seja: o valor limite que a condigao real do equipamento
pode atingir com a acao de continuar a operacao (ur = P). Logo, a partir de tal valor, é mais
interessante interromper a operagao e efetuar a manutencao (agao ux = I).

Entretanto, a funcao p obtida faz o mapeamento entre o x e u. Para estimar o estado real a
partir das informacoes coletadas, pode-se utilizar

(6)

Przy = z|ly] =



J(x)
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Figura 5: Ilustracao da iteragao de valor.

Algoritmo 1 Algoritmo de iteragao de valor

J(x)—0, VzxeS > inicio com J arbitrario
repita
A0
para todo x € S faga > para todo estado
v J(x)
J(x) = min Y pugr(u)(g(a’,u) + Jip(a'))
U
z'eS
A — max(A, |v — J(x)|)
enquanto A < 0 > precisao desejada
retorne p(z) = arg min Z P (0)(g(2’,u) + J(2'))
Uk z'eS

3.3 Exemplo numérico

Visando validar nossa metodologia, vamos aplicar a técnica proposta no seguinte problemaﬁ
deseja-se monitorar um equipamento que estd sujeito a vibracdo. Através do sistema de in-
formacao obtém-se, a cada hora, medidas da vibracao do equipamento. Sabe-se que a condicao
do equipamento é diretamente proporcional a vibracao submetida e deseja-se monitorar a vi-
bracao para determinar quando efetuar a manutencao no equipamento.

A equipe de engenharia propoe que a condicao seja dividida em quadro estados:

Parametro de controle observado Zk
0<6;<0.3 1
0.3 <6, <0.7 2
0.7<6,<1 3

O > 1 4 (aparentemente falhado)

Tabela 2: Exemplo numérico: classificagdo do parametro de controle.

O estado inicial do equipamento é o = 1 e as probabilidades de transicao da condigao p;; e de
estimacao da condigao b, (z) sao as seguintes:

40s experimentos foram feitos em um computador com processador Intel® Pentium®) 4 3.06GHz e 2 GB de
memoria RAM, utilizando Windows® XP SP2. O algoritmo foi implementado em MatLab®.



Xpq X Zy

Figura 6: Exemplo numérico: probabilidades de transicao e leitura.

A fungao de custo g(xy,uy) considerada:

Agao (uy)
Estado real (zj) | Prosseguir | Interromper
1 1 )
2 1.1 )
3 1.21 )
4 (falhado) 20 10

Tabela 3: Exemplo numérico: classificagao do parametro de controle.

Avaliamos a técnica nos seguintes cendrios:

1. Iy = (20,21, 22) = (1,1,1): foram necessérias 20 iteracoes até o algoritmo de iteracio de
valor convergir (utilizando 6 = 0.01, tempo computacional desprezivel):

235

23t
225)
22}

o 215¢
21t

Valor d

20.5+
20¢
19.5¢

19-

185 : :
0 5 10 15 20

lteracéo

Obteve-se as seguintes condig¢Oes limites de operagao:
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Estado real (z) | Decisao 6tima (u) | Custo esperado até a interrupgao da operagao
1 Prosseguir 23.5711
2 Prosseguir 25.9251
3 Interromper 27.3264
4 Interromper 42.3264

A partir do vetor de informacoes, estima-se a condi¢ao atual do equipamento (usando @
e, combinando com a tabela anterior, obtém-se a “esperanca” do custo esperado:

Estado real (z) | Probabilidade | Custo esperado | Decisao 6tima
1 0.986468 23.2483 Prosseguir
2 0.013532 0.3551 Prosseguir
3 0.000000 0.0000 Interromper
4 0.000000 0.0000 Interromper

Deve-se escolher a decisao que esté relacionada ao maior custo esperado. Portanto, a agao
otima wug é prosseguir a operagao.

AAAAAA

. 15 = (20,21, 22, 23, 24, 25) = (1,1,1,2,2,2): as condigdes limites de operagao sao as mesmas
do exemplo anterior, pois as probabilidades de transicao e de leitura bem como os custos
sao os mesmos. Entretanto a estimacao da condigao atual do equipamento muda, pois
o vetor de informagoes é diferente. Assim, conclui-se que a acdo O6tima us é continuar a

operagao.

Estado real (z) | Probabilidade | Custo esperado | Decisao 6tima
1 0.001706 0.0402 Prosseguir
2 0.982791 25.4790 Prosseguir
3 0.015503 0.4236 Interromper
4 0.000000 0.0000 Interromper

. Considere o mesmo [5, mas que o custo de manutengao preventiva é de 2 (e ndo mais 5),

ou seja: g(zp,up =1) =2,
operacao sao diferentes:

Yz # L. Nesta caso, como esperado, as condigoes limites de

Estado real (z) | Decisao 6tima (u) | Custo esperado até a interrup¢ao da operagao
1 Prosseguir 14.9948
2 Interromper 15.8947
3 Interromper 15.8947
4 Interromper 33.8947

O que implica, a partir do vetor de informagoes, na seguinte estimacao:

Estado real (z) | Probabilidade | Custo esperado | Decisao 6tima
1 0.001706 0.0256 Prosseguir
2 0.982791 15.6212 Interromper
3 0.015503 0.2464 Interromper
4 0.000000 0.0000 Interromper

Assim, conclui-se que a acao Otima us € interromper a operacao. Gerencialmente, este
cendrio ilustra que, quanto menor for o custo de manutengao preventiva (g(xg,ur =
I), Vzp # L), maior serd a tendéncia de parar o equipamento.
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4 Inferéncia dos parametros do modelo

Até o momento admitimos o conhecimento dos parametros de entrada A = (A, B, w) do modelo.
Entretanto, estes parametros nao sao conhecidos na pratica. Embora em alguns casos estes
parametros possam ser determinados via ensaios de engenharia, o mais interessante é estima-
los com dados de campo, que geralmente sao coletados pelas industrias (principalmente as de
processo, através de sistemas PIMS - Sistemas de Gerenciamento de Informagoes de Planta).
A estimagao de A pode ser vista como um Modelo de Markov Ocultﬂ do terceiro tipo: a escolha
de tais parametros pode ser considerada um problema de otimizacgao, onde busca-se estimar os
parametros que proporcionam as observagoes mais proximas das observacoes coletadas.

Seja O um grupo de N conjuntos de observa(;f)esﬁ7 ou seja: O = {01,09,...,0n}. Cada
conjunto O,, é composto por K + 1 observacoes da condi¢ao do equipamento, sempre iniciando
do instante que o equipamento iniciou a operar (k=0) e terminando quando a agao escolhida for
interromper a operacgao, ou seja: O,, = {2, 21, 22, . .., 2K }. Assim, O representa todo o histérico
de dados disponivel para ser usado para construir estimadores das quantidades de interesse. Um
exemplo deste histdrico é apresentado na tabela

0 ‘ZO 21 R2 23 24 25 k6 k7 28 29 210 *11

o1 1 1 2 1 2 3 3 3 4

o1 1 1 1 2 2 2 3 3 3 4
o1 1 1 2 2 2 3 3 3

O4(1 1 1 1 2 2 2 3 2 3 3 4

Tabela 4: Exemplo de observacoes coletadas.

Portanto, ajustar o modelo em funcao dos dados significa maximizar Pr[O|A]. O padrao de
escolha de A comumente utilizado é o de maxima verossimilhanca. Logo, busca-se encontrar os
valores dos pardmetros que maximizam a probabilidade de se observar os dados coletados. Foi
proposto na literatura algoritmo conhecido como Baum—Welch[] que lida com este problema.

4.1 Algoritmo de Baum-Welch

Formalmente, o Baum-Welch é um algoritmo do tipo generalized expectation-mazimization (GEM).
Ele é capaz de calcular as estimativas de maxima verossimilhanca a partir apenas dos dados O
(conhecidos como dados de treinamento) e de um valor a priori dos parametros de interesse
(e.g. estimadas pela engenharia) como, por exemplo, foi apresentado na segao 3.3.

Sejam Wy, Dij € b.(2) estimadores para w,, pij € by(z) respectivamente. Estes estimadores sao
baseados no principio freqiientista, como segue:

e w, = freqiiéncia esperada no estado x no tempo 0

o B — numero esperado de transicoes do estado i para j
Pij = hidmero esperado de transicoes partindo do estado i

o bu(z) = namero esperado de vezes no estado x onde observou-se z
z numero esperado de vezes no estado x

Para cada conjunto de obsevacgoes O,,, define-se as seguintes varidveis:

o ay(z) = Prlzo, 21,22, ..., 2k, T = ||

SPara mais detalhes sobre a teoria de Modelos de Markov Ocultos ver, e.g., [Dugad and Desai, 1996,
Rabiner, 1989).

5Obs.: nio confundir com o vetor de informacdes Iy.

"Baum, L. E., Petrie, T., Soules G., and Weiss, N. (1970). A maximization technique occurring in the statistical
analysis of probabilistic functions of Markov chains. The Annals of Mathematical Statistics, vol. 41.
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o Bi(w) = Prl2ki1, 2i2, - - 2K, TK = 2|

o (z) = Prfey = 2|Op, A] = U2 = 2 OnlA] _ 0bl(2)/51(z)

Pr[O, | Pr[O, |
o &(i,) = Prlag =i, 241 = j|Op, A = Prizy ;:E?)ZIIA] 3, OnlA] _ ak(l)pzﬁi({gﬁ)}ﬁkﬂ(])
Pode-se demonstrar que:
K—1
. Z vk () = ntmero esperado de transigoes a partir de =
k=0
K—1
. Z &k(i,j) = numero esperado de transicoes de i para j
k=0

E, finalmente, a re-estimacao de Baum-Welch é escrita como:

® W, =()

K-1 K—-1
o pij= Y (i) > (i)
k=0 k=0
K K
o bo(z)= > wm@)/> k()
k=0 k=0

s.a. zZp=z

A partir destas equacbes chegamos ao algoritmo seguinte:

Algoritmo 2 Algoritmo de Baum-Welch
1: N\ < (A, B,w) > inicio com A arbitrério (valores a priori)
2: para todo n € 1..N faga > para cada conjunto de observacoes
3: Wy — Y0(x), Vres
1

K-1 K-
4 e Y &0/ Y wi), ViesvVies
k=0 k=0

K K
5o be(z) = DY wml@)/) w), VeeS, VzeZ
k=0 k=0

s.a. zp=z

6: An (@, Pij, bz (2))
7: retorne \y

4.2 Exemplo numérico

Visando ilustrar como a estimagao dos parametros, vamos aplicar a técnica no exemplo consid-
erado na secao 3.3: a partir dos valores estimados pela engenharia (figura @, deseja utilizar um
banco de dados para melhorar as estimativas. Considere os seguintes cenario

O ‘Zo 1 R2 A3 k4 Rp 26 k7 28 29 210 Z11 %12 213 R4 %15 216 *17

o,/1 1 1 1 1 2 1 2 2 2 2 2 3 3 3 3 3 3
o/1 1 1 1 1 2 1 2 3 2 2 2 3 3 3 3 3 14
o;/1 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 14
o,/1 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 14

8Por simplificacdo, vamos considerar que os conjuntos de observacdes O,, possuem o mesmo tamanho.
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A re-estimagao gerada pelo Baum-Welch é a seguinte:
- Probabilidades de transigao:

Lh+1

Tk 1 2 3 4

1 | p11 =0.84738 | p1o = 0.15262 pi3 =0 p1a =20

2 p21 =0 poo = 0.83327 | po3 = 0.16673 p2g =0

3 p31 =0 p32 =0 p33 = 0.70808 | p3q4 = 0.29192

4 pa1 =0 paz =0 paz =0 Pag =1

- Probabilidades de leituras:
2k

Tk 1 2 3 4
1 | by (1) =0.95118 | b;(2) = 0.048819 b1(3) =0 b1(4) =0
2 | ba(1) = 0.044653 | b2(2) = 0.90535 | ba(3) = 0.050002 ba(4) =0
3 b3(1) =0 b3(2) =0 b3(3) = 0.99997 | b3(4) = 0,00003
4 by(l) =0 by(2) =0 by(3) = 0.6742 by(4) = 0.3258

Pode-se dizer, neste caso, que os novos parametros A nao sao tao discrepantes dos valores iniciais,
apesar das estimativas de bs(3) e bs(4) serem bastante diferentes das iniciais.

2.
) ‘ Z0) 21 R2 23 4 R 2 7 R R9 10 211 12 Z13 R4 215
ool1 1 1 2 1 2 2 2 3 3 3 3 3 4 4 4
o,/1 1 1 1 2 1 2 3 2 2 3 3 3 3 4 14
o;/1 1 1 1 1 2 2 2 2 3 3 3 3 4 3 4
O4/1 1 1 1 1 2 2 2 3 3 3 3 3 3 4 4
A re-estimagao gerada pelo Baum-Welch é a seguinte:
- Probabilidades de transicao:
Tl+1
Tk 1 2 3 4
1 P11 = 0.79435 P12 = 0.20565 P13 = 0 P14 = 0
2 po1 =0 pog = 0.74851 | pog = 0.25149 pos =0
3 P31 = 0 P32 = 0 P33 = 0.76721 P34 = 0.23279
4 pa1 =0 paz2 =0 pa3 =0 Pag =1
- Probabilidades de leitura:
2,
Tk 1 2 3 4
1 | b1(1) =0.92234 | b;(2) = 0.07766 b1(3) =0 b1(4) =0
2 | ba(1) = 0.066624 | ba(2) = 0.84812 | by(3) = 0.085252 ba(4) =0
3 b3(1) =0 b3(2) =0 b3(3) = 0.99998 | b3(4) = 0,00002
4 by(1) =0 by(2) =0 by(3) = 0.21477 | by(4) = 0.78523

Acreditamos que neste caso que os novos parametros A estdo mais distantes daqueles obtidos
anteriormente, indicando que estes dados denodam uma deterioragao mais elevada.
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5 Conclusoes e futuros trabalhos

Neste trabalho discutimos a formulagao de politicas de manutencao preventiva baseada na
condicdo dos equipamentos. A idéia central foi construir um conjunto de regras de apoio a
decisao de intervir (ou ndo) em um determinado equipamento com o objetivo de minimizar o
custo total de operacido do equipamento no horizonte de tempo considerado. A motivacao para
esta abordagem esta relacionada a utilizacao da informagao, mesmo que incompleta ou parcial,
a respeito da condicao do equipamento — o que reflete a realidade encontrada pelos gestores
responsaveis pela tomada de decisao. Um ponto que acreditamos relevante neste trabalho é que
apresentamos técnicas para a estimacao dos parametros do modelo proposto a partir de dados
de campo.

Pretende-se continuar esta pesquisa em duas frentes. A primeira serd o refinamento da técnica de
resolucao do modelo proposto (algoritmos para programacao dinamica-estocdstica em horizonte
infinito). A segunda, ainda como passos futuros desta pesquisa, pretendemos realizar uma
comparacao entre esta técnica e aquelas baseadas na Teoria da Confiabilidade, com o intuito de
inferir a respeito do ganho em usar ou nao a informagao sobre a condicao do equipamento na
decisao de intervir ou nao.
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