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Resumo

Os Os testes de degradação são uma abordagem alternativa aos testes de tempo de vida e 
aos testes de vida acelerados em estudos de confiabilidade. A principal vantagem desses 
testes sobre os outros é que a análise pode ser feita, ainda que não tenha ocorrido uma única 
falha. Neste trabalho, usamos métodos de inferência bayesiana para estimar os parâmetros 
de  um  simples  modelo  de  degradação.  Para  tanto,  utilizamos  o  software  WinBUGS 
(Spiegelhalter  et  al.,2000),  para  obtermos  uma amostra  da distribuição  a posteriori via 
Gibbs  Sampler.  Replicamos  o  exemplo  apresentado  por  Hamada  (2005)  e,  também, 
mostramos um exemplo do desgaste das rodas dos trens . Os resultados foram satisfatórios.

Palavras-chave: Testes de degradação, Inferência bayesiana, Gibbs Sampler, WINBUGS
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1. INTRODUÇÃO

Os testes de degradação são uma abordagem alternativa aos testes de tempo de vida e aos 
testes de vida acelerados em estudos de confiabilidade. Nos testes de degradação, a resposta 
de interesse não é o tempo de falha, mas uma medida de alguma característica de qualidade 
do produto de interesse (Oliveira & Colosimo, 2004). A principal vantagem desses testes 
sobre os outros é que a análise pode ser feita, ainda que não tenha ocorrido uma única falha. 
 Métodos de estimação clássica podem ser usados para obter a distribuição do tempo de 
falha, tais como analítico, numérico e aproximado (ver Oliveira & Colosimo, 2004). 
Entretanto,  neste  trabalho,  o  nosso  objetivo  é  usar  e  estudar  métodos  bayesianos  para 
estimar os parâmetros de um modelo simples de degradação e, assim, obter a distribuição 
do tempo de falha. No artigo de Hamada (2005), métodos bayesianos são utilizados para se 
fazer  a  estimação,  logo  tomaremos  esse  artigo  como  base  deste  trabalho.  Tentaremos, 
também, replicar o exemplo de Hamada (2005) e analisaremos os dados do desgaste das 
rodas de trens.
Este  trabalho  está  organizado  da  seguinte  forma:  Na Seção  2,  métodos  bayesianos,  na 
Seção 3, testes de degradação, exemplos e análise e, finalmente, a conclusão.

2. ESTATÍSTICA BAYESIANA

Os componentes básicos da Estatística Bayesiana são: informação a priori, resumida através 
da  distribuição  a  priori;  a  informação  trazida  pela  amostra  de  dados,  que  é  resumida 
utilizando a função de verossimilhança; a distribuição a posteriori, que é uma atualização 
da distribuição a priori pelos dados, e, em alguns casos, o cálculo da distribuição de futuras 
observações. O problema pode ser colocado da seguinte forma:
Seja  ),,( 1 nθθθ =  uma  quantidade  desconhecida  (portanto  aleatória)  com  possíveis 
valores em um conjunto Θ . Admita que desejamos inferir sobre Θ . A informação inicial 
H (que varia de pessoa a pessoa) sobre  θ  é resumida probabilisticamente em termos de 
uma função de densidade: 

Θ∈θθπ ),|( H ,                                                       (1)
que é a informação disponível sobre θ . Esta distribuição é denominada distribuição a priori 
de θ . Com o propósito de atualizar esta informação sobre θ , uma amostra de n  valores de 
um  vetor  aleatório  ),,( 1 nXXX =  relacionado  com  θ ,  será  observado.  Antes  de 
observarmos a amostra, descreveremos a incerteza sobre x , dado θ , através da função:

Θ∈∈ θθ ,),,|( XxHxp                                                       (2)
Note  que  a  dependência  de  θ  é  fundamental.  A  informação  em  ),,( 1 nXXX =  é 
resumida pela Função de Verossimilhança com respeito a θ , que é uma função que associa 
a cada  θ  o valor  ),|( θHxp . Para um valor fixado de  θ , a Função de Verossimilhança 
fornece a probabilidade de ser observado x  quando θ  é o verdadeiro estado de natureza.
Depois de atribuídas as funções de probabilidade em (1) e (2), é de interesse encontrar uma 
maneira de atualizar a opinião inicial com respeito a θ , utilizando a informação contida na 
amostra.  A técnica utilizada para realizar  tal  operação é o Teorema de Bayes,  isto é, a 
distribuição a posteriori de θ  é dada por:

Θ∈== θθπθθθ ,
)(

)()|(
)(
),()|(

xp
xp

xp
xpxp                                                (3)
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Se utilizarmos a notação )|( xθπ  em lugar de )|( xp θ  para enfatizar o fato de que )|( xθπ
é uma atualização de )(θπ , temos:

                                Θ∈== θθπθθθπ ,
)(

)()|(
)(
),()|(

xp
xp

xp
xpx                                              (4)

Note que 

∫= θθπθ dxpxp )()|()(                                                       (5)
 corresponde a densidade marginal de  x , que é denominada distribuição preditiva. Para 
uma explicação mais detalhada ver, por exemplo, Zuazola et al. (1996).

2.1 Estimação Pontual

A distribuição a posteriori é toda a informação disponível sobre  θ  após observarmos os 
dados. Apesar disto, muitas vezes precisamos resumí-la em um único número. Este número 
é o estimador de Bayes.
Seja  )(),( δθθδα −= a  perda  esperada,  onde  θ  é  o  valor  real  e  δ  são  possíveis 
estimativas de  θ . O estimador de Bayes  para  θ  é o valor  δ que torna mínima a perda 
esperada, a posteriori, isto é:

∫== θθπδθδθθ
δδ

dxLxLEB )|(),(min)|),((minˆ                              (6)

Considerando a função de perda 2)(),( δθδθ −=L quadrada , temos )|( xE θδ = - que é a 
média a posteriori.
Devemos ressaltar que diferentes funções de perda geram diferentes estimadores de Bayes e 
devemos frisar que a escolha da função de perda é completamente subjetiva,  a moda  a 
posteriori é  o  estimador  de  Bayes  quando a  função de  perda  é  a  0−1 e  a  mediana  a 
posteriori é o estimador de Bayes quando a função de perda escolhida é a absoluta (Migon 
& Gamerman, 1999).
Como  os  cálculos  para  encontrarmos  a  distribuição  a  posteriori podem  ser  muito 
complicados dependendo da distribuição dos dados e da distribuição a priori especificada 
pelo  pesquisador,  há  muito  tempo  o  método  utilizado  para  contornar  esse  problema  é 
especificar uma priori conveniente que tenha o mesmo núcleo da função verossimilhança, 
que é conhecido como análise conjugada. Por exemplo, seja ),,( 1 nXXX =  uma amostra 
i.i.d. com distribuição Poisson( λ ), logo a priori conjugada da distribuição da amostra X  é 
a  família de distribuição Gama( βα , ), 0, >βα .
Entretanto,  esse  problema  foi  resolvido  com  a  introdução  dos  métodos  de  simulação 
MCMC (Markov Chain Monte Carlo) que nos permitem obter uma amostra da distribuição 
a  posteriori,  amostrando  de  uma  distribuição  de  referência  ou  da  própria  distribuição 
condicional  completa  (conhecida),  sem conhecermos a  forma fechada da distribuição  a 
posteriori. Introduziremos esse método na próxima subseção.

2.2. Métodos de Simulação Monte Carlo Via Cadeia de Markov (MCMC)

Idéia Central: Construir uma Cadeia de Markov, da qual é fácil de se gerar uma amostra e 
que tem distribuição de equilíbrio )(θh  dada pela distribuição de interesse.

6



• Seja )(~,,1 θθθ pp  com ),,( 1 pp θθ   definida em pR⊂Θ .
• Suponhamos uma Cadeia de Markov homogênea, irredutível e aperiódica com espaço de 
estado  Θ  e cuja distribuição de equilíbrio,  )(θp possa ser construída, ou seja, podemos 
construir uma Cadeia de Markov com probabilidade de transição invariante no tempo, onde 
cada estado pode ser visitado de qualquer outro com um número finito de interações e sem 
estado absorvente cuja distribuição estacionária seja )(θp .
• Deve ser fácil gerar amostras das probabilidades de transição.
 A metodologia utilizada no software WinBugs (que utilizaremos neste trabalho) é a do 
Gibbs Sampler.

2.2.1 Gibbs Sampler

O  Gibbs  Sampler  ou  amostrador  de  Gibbs  é  uma  técnica  usada  para  gerar  variáveis 
aleatórias  de  uma  distribuição  marginal  indiretamente,  sem  precisarmos  calcular  a 
densidade.  Sua idéia inicial  foi apresentada por Geman & Geman (1984),  mas a forma 
como o conhecemos hoje foi descrita por Gelfand & Smith (1990). É importante lembrar 
que o Gibbs Sampler (GS) é um caso particular do algoritmo Metropolis-Hastings, que usa 
métodos de simulação Monte Carlo via Cadeias de Markov (MCMC) em sua essência. O 
Gibbs Sampler é essencialmente simples de se implementar e sua metodologia tem causado 
grande impacto em problemas paramétricos, principalmente no uso de modelos Bayesianos.
Ele é baseado nas propriedades elementares das Cadeias de Markov, sendo que a essência 
desse método, em um sentido assintótico, nos permite extrair uma amostra diretamente da 
densidade )(θh  tal que:

∫= θθθθ dffh )(/)()( ,                                            (7)
sem a necessidade de resolvermos a integral. O Gibbs Sampler é restrito a problemas onde 
as distribuições condicionais  a posteriori são disponíveis, ou seja, a geração de variáveis 
aleatórias destas distribuições é possível. Quando não estão disponíveis essas condicionais, 
normalmente utilizamos o algoritmo Metropolis-Hastings, resolvendo a questão. O método 
Gibbs Sampler é muito útil em situações multidimensionais e quando temos mais de um 
parâmetro, por exemplo, na distribuição normal. Não descreveremos aqui detalhes sobre o 
método usado no GS. Maiores detalhes podem ser obtidos em Casella & George (1992).
A convergência da cadeia para uma distribuição estacionária é um tópico delicado e um 
tanto quanto controverso na literatura. Aqui apenas lançaremos mão de técnicas informais 
gráficas para a verificação da cadeia, porém há várias técnicas formais de diagnóstico da 
convergência  da  cadeia  tais  como  Geweke  (1992)  e  Raftery(1992),  que  não  serão 
aboradados neste trabalho.
Para detectar o período de burn-in, usamos gráficos como a média ergódica e funções de 
autocorrelação.  No  gráfico  da  média  ergódica,  quando  não  houver  variabilidade 
significativa,  houve convergência.  Já no gráfico de autocorrelações,  quando não houver 
autocorrelações significativas, houve a convergência. Além disso, construímos histogramas 
e a densidade de Kernel para amostra obtida distribuição a posteriori. Esses gráficos estão 
disponíveis no software WinBugs.
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3. TESTES DE DEGRADAÇÃO
 
Como foi dito anteriormente, os testes de degradação são uma abordagem alternativa aos 
testes de tempo de vida e aos testes de vida acelerados em estudos de confiabilidade. Nos t
estes de degradação, a resposta de interesse é alguma medida de performance do produto ou 
componente  (resistência  à  tração,  oxidação),  obtida  ao  longo  do  tempo  (Freitas  & 
Colosimo,1997).  O objetivo aqui é estudar a degradação da performance do produto ao 
longo do tempo e utilizar esta informação para estimar a distribuição do tempo de vida do 
produto (componente).

3.1. Um Modelo Simples de Degradação

Considere o seguinte  modelo para a curva de degradação linear  começando do valor  0 
(Hamada,  2005).  Suponha  que  nós  temos  dados  sobre  n  observações.  Para  a  i-ésima 
unidade, o valor verdadeiro da degradação é dado por ttD ii )/1()( θ= ; onde o intercepto é 
zero e inclinação iθ/1 . 
Uma unidade é considerada falha quando a degradação atinge o valor  fD . Considerando 

fi DtD =)( , o tempo de vida iT  para a i-ésima unidade é ifD θ .
Para  as  unidades  terem  diferentes  tempos  de  vida,  iθ  precisa  variar  de  unidade  para 
unidade. Isto é, iθ  é uma variável aleatória. Para o tempo de vida de uma unidade seguir 
uma  distribuição  Weibull,  é  necessário  que  { iθ }  siga  uma  distribuição  Weibull  a 
inclinição. Para tanto, note que se { iθ } segue uma distribuição  ),( λβWeibull , os tempos 
de vida seguem uma distribuição )/,( βλβ fDWeibull , ou seja, o parâmetro de forma é β  e 
o de escala é βλ fD/ .
Na prática, os dados de degradação são obtidos pela amostragem da curva de degradação 
sobre  o  time  e  eles  estão  sujeitos  a  um erro  de medida.  Então,  o  valor  verdadeiro  da 
degradação no tempo  ijt  ( )( iji tD ) é observado com ijε . Isso resulta no seguinte modelo 
aditivo da degradação observada ijy : 

ijijiijijiij ttDy εθε +=+= )/1()( ;                                           (8)

onde ),0(~ 2
.

σε N
ind

ij
, ),(~ λβθ weibulli , ki ,,1 = e imj ,,1 = . 

Note que os dados de degradação para i-ésima unidade provêm informação sobre iθ  e 2
iσ . 

Com os dados de degradação para uma amostra de unidades, é preciso obter informação 
sobre ( λβ , ), os parâmetros  da distribuição Weibull de iθ .
A função de confiabilidade para o modelo em (8) é dada por:

])/(exp[)(1)( ββλ tDtFtR f−=−= ;                                         (9)

onde )(tF é a distribuição acumulada de uma v. a. )/;(~ βλβ fDWeibullT .
Nós, também, podemos fazer inferência sobre o quantil α da distribuição do tempo de vida 
que possui, para o modelo em (8), a seguinte forma:
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ββ
α αλ /1)]1ln()/([ −−= fDt                                       (10)

Para encontramos o quantil α , usamos o fato dos tempos de vida ter distribuição Weibull 
novamente. 
Hamada(2005)  não mostra  a  forma do tempo de vida médio,  mas se fizermos algumas 
álgebras, obteremos a seguinte forma para o tempo médio de vida:

ββλβ /11 )//()1( fDMTTF −+Γ=                                                    (11)

Exemplo 1: degradação de um laser (Hamada, 2005)

No estudo, são consideradas 15 unidades as quais são observadas de 250 em 250 horas de 0 
até 4000 horas, totalizando 16 medições por unidade. A variável de degradação considerada 
é  o  percentual  de degradação da intensidade  de luminosidade  do laser,  sendo que uma 
unidade é considerada como falha quando o nível %10=fD  (valor crítico estabelecido) é 
atingido.

                       Figura 1: Gráfico do percentual da degradação do laser versus tempo

Tentaremos,  também,  replicar  o  exemplo  de Hamada (2005)  que considera  o   seguinte 
modelo para os dados degradação de um laser:  ijijiijijiij ttDy εθε +=+= )/1()(   ;  onde 

),0(~ 2
.

i

ind

ij N σε  e ),(~ λβθ weibulli , logo, ),)/1((~| 2
iijiiij tNy σθθθ =  para 15,,1 =i  e 

16,,1 =j . As seguintes distribuições a priori foram consideradas:

)01,0;01,0(~
)01,0;01,0(~
)01,0;01,0(~

2 idaGamaInvert
Gama
Gama

σ
λ
β
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Segundo  Hamada  (2005),  a  distribuição  a  posteriori de  ),,( 2σλβ  é  dada  por 

∫= γγγyηηy dffy )()|(/)()|()|( ππηπ ;  onde  ),,( 2σβλ=η ,  que é obtida por MCMC 
(Gibbs Sampler), considerando 10.500 amostras e burn-in=500.

Tabela 1: Resumos da dist. a posteriori do laser (replicação)
Parâmetro Média DP Q 2,5% Q 50% Q 97,5%

λ 4,50E-10 1,56E-08 9,45E-25 1,28E-14 5,08E-10

β 5,63 1,53 3,40 5,08 8,74
σ 0,21 0,01 0,19 0,21 0,23

R(4500) 0,70 0,11 0,49 0,70 0,89

1,0t 3585,00 399,40 2681,69 3556,00 4423,92

Note que a probabilidade de alguma unidade sobreviver mais de 4500 horas é de 0,70 e que 
o  tempo  para  que  10% das  unidades  estejam fora  de  operação  é  de  3585  horas.  Um 
intervalo empírico de credibilidade de 95% para R(4500) e  1,0t  é dado por [0,70;0,89] e 
[3556 horas;4424 horas], respectivamente.

Tabela 2: Resumos da dist. a posteriori do laser (resultados do artigo de Hamada (2005)) 
Parâmetro Média DP Q 2,5% Q 50% Q 97,5%

λ 6,63E-11 1,35E-09 2,59E-20 1,63E-16 8,53E-11
β 5,69 0,95 3,69 5,77 7,14
σ 0,21 0,01 0,19 0,21 0,23

R(4500) 0,71 0,08 0,52 0,72 0,85

1,0t 3650,00 348,60 2852,00 3699,00 4206,00

Os resultados que obtivemos (Tabela 1) são bem similares aos obtidos no artigo (Tabela 2). 
Os resultados não são exatamente os mesmos, porque Hamada (2005) não especificou a 
semente aleatória utilizada na simulação.  
Abaixo apresentamos o histograma de R(4500) e 1,0t .
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Figura 2. Histograma de R(4500) e 1,0t

É fundamental a verificação da convergência da cadeia para garantirmos uma inferência 
correta sobre os parâmetros do modelo. Neste trabalho, não abordaremos nenhum método 
formal  de  verificação  de  convergência  apenas  métodos  informais  (gráficos).  A  seguir 
apresentamos  os  gráficos  de  verificação  informal  da  convergência  da  cadeia  para  a 
distribuição estacionária dos parâmetros a posteriori. 
Quanto aos gráficos, não temos muito que comentar, já que o nosso intuito é replicar o 
exemplo. Observe, nos gráficos do Apêndice I, que a amostra da distribuição a posteriori 
de  β  é  um pouco instável  e  possui altas  autocorrelações  se comparado com os outros 
parâmetros. Infelizmente, Hamada (2005) não apresenta nenhum gráfico de verificação da 
convergência da cadeia para que pudéssemos compará-los.

Exemplo 2: dados de desgaste das rodas de trens 

Esse conjunto de dados é referente ao desgaste de rodas de trens. Cada trem 4 tem quatro 
vagões – 1 vagão máquina que puxa os outros três. Cada vagão tem 4 eixos com duas rodas 
cada, totalizando 8 rodas por vagão.  
 14 trens foram selecionados aleatoriamente e o acompanhamento foi feito a cada 50 mil 
KM. Medimos o diâmetro da roda do vagão máquina – que possui um diâmetro inicial de 
966 mm. O diâmetro mínimo tolerável é de 889 mm.
Por conveniência, trabalharemos com a variável desgaste, portanto o desgaste da i-ésima no 
j-ésimo instante de medição é dado por ijij Diametroy −= 966 . Neste caso, mmD f 77= .
Resumindo, são consideradas 14 unidades (trens) as quais são observadas de 50 mil KM em 
50 mil KM de 0 até 600 mil KM. Nas unidades 11, 12 e 14 foram feitas 8, 6 e 11 medições,  
respectivamente,  e nas demais 12 medições.  A variável de degradação de interesse é o 
desgaste das rodas dos trens, sendo que uma unidade é considerada como falha quando o 
nível mmD f 77=  (valor crítico estabelecido) é atingido. A seguir, para o trabalho não ficar 
muito extenso, mostraremos o ajuste do modelo de degradação apenas para a roda MA11, 
mas poderíamos analisar as outras rodas também.
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Consideraremos o mesmo modelo utilizado por Hamada (2005) para os dados degradação 

das  rodas  dos  trens:  ijijiijijiij ttDy εθε +=+= )/1()( ;  onde  ),0(~ 2
.

i

ind

ij N σε  e 

),(~ λβθ weibulli , logo,  ),)/1((~| 2
iijiiij tNy σθθθ =  para  14,,1 =i  e  12,,1 =j . As 

seguintes distribuições a priori foram consideradas:

)01,0;01,0(~
)01,0;01,0(~
)01,0;01,0(~

2 idaGamaInvert
Gama
Gama

σ
λ
β

Consideramos uma amostra de 102.000 das quais retiramos as 2.000 primeiras (burn-in). 
As retiradas são feitas de 500 em 500 amostras. 
Na Figura 3, mostramos os dados do desgaste das rodas dos trens versus a quilometragem. 
Observe que poucas unidades falharam.

Figura 3. Gráfico da degradação das rodas de trens.

Na Tabela 3, note que a probabilidade de uma roda MA11 (unidade) sobreviver mais de 
300 mil KM é de 0,92 e que a quilometragem necessária para que 10% das rodas MA11 
estejam fora de operação é aproximadamente 382,80 mil KM. Um intervalo empírico de 
credibilidade de 95% para R(300) e 1,0t  é dado por [0,80;0,98] e [163,65 mil Km; 624,66 
mil KM], respectivamente.

Tabela 3: Resumos da dist. a posteriori degradação das rodas dos trens

Nota: * 300 mil KM.

Parâmetro Média DP Q 2,5% Q 50% Q 97,5%
λ 8,84E-03 0,012 3,6E-04 4,87E-03 0,041
β 1,95 0,41 1,22 1,93 2,80
σ 0,99 0,06 0,88 0,99 1,11

R(300*) 0,92  0,05 0,80 0,93 0,98

1,0t 382,80  118,785 163,65 378,90 624,66

5,0t 1011 170,75 688,85 1006 1361
MTTF 1097 172,13 800,84 1083 1473,13
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Abaixo  apresentamos  o  histograma  de  R(300)  e  1,0t .  A  distribuição  de  R(300)  é  bem 
assimétrica.
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 Figura 4. Histograma de R(300) e 1,0t  e Tempo Médio do exemplo 2

Observe, nos gráficos no Apêndice II, que a distribuição  a posteriori de  β ,  λ  e  σ não 
possui altas autocorrelações e convergiram para um determinado valor. 
CONCLUSÃO

Como já havíamos dito, os testes de degradação são uma abordagem alternativa aos testes 
de tempo de vida e aos testes de vida acelerados em estudos de confiabilidade. A principal 
vantagem desses testes sobre os outros é que a análise pode ser feita, ainda que não tenha 
ocorrido uma única falha.
 Fazer inferência bayesiana sobre os parâmetros de um simples modelo de degradação foi o 
objetivo  principal  do trabalho.  Por  isso,  lançamos  mão do trabalho de Hamada (2005), 
replicando  o  seu  exemplo  (degradação  do  laser)  e  utilizando,  também,  o  software 
WINBUGS. Conseguimos obter as mesmas estimativas dos parâmetros do simples modelo 
de degradação de Hamada (2005). Utilizamos o mesmo modelo para analisar os dados do 
desgaste de rodas de trens de metrô. O teste de degradação se encaixou perfeitamente para 
esses dados, haja vista que tínhamos poucas falhas. Por uma questão de tempo, fizemos 
apenas a análise da roda MA11 e os resultados foram muito satisfatórios.
Para um trabalho futuro, poderíamos analisar os dados das outras rodas da degradação das 
rodas dos trens e também comparar os testes de degradação com os outros métodos. Fazer 
inferência  bayesiana utilizando outro modelo de degradação,  por exemplo,  de regressão 
linear – que segundo Hamada (2005), não é uma tarefa trivial. 
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APÊNDICE I

Exemplo 1:

beta sample: 10250
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 Gráficos de verificação da convergência da cadeia para a dist. a posteriori de β
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APÊNDICE II

Exemplo 2:
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