Análise de Dados Longitudinais Modelos Lineares para Dados Longitudinais

Enrico A. Colosimo/UFMG
http://www.est.ufmg.br/~enricoc/

Modelos Marginais para Dados Longitudinais

- **1** Modelar a resposta média $E(Y_{ij})$; $i=1,\ldots,N;\ j=1,\ldots,n.$
- Modelar a Estrutura de Variância-Covariância Var(Yi).
- Assumir uma distribuição (normal) para a resposta contínua (dispensável).

Modelos Lineares para Dados Longitudinais

Modelo Linear Geral, p- parâmetros

$$Y_{ij}=\beta_1X_{ij1}+\beta_2X_{ij2}+\cdots+\beta_pX_{ijp}+\varepsilon_{ij};\quad i=1,\ldots,N;\ j=1,\ldots,n,$$
 em que $X_{ij1}=1$. Escrevendo em forma matricial.

$$Y_{i} = \begin{pmatrix} Y_{i1} \\ Y_{i2} \\ \vdots \\ Y_{in} \end{pmatrix} = X_{i}\beta + \varepsilon_{i}$$

em que X_i tem dimensão $n \times p$ e β é um vetor p-variado.

Estrutura de Variância-Covariância

$$Var(Y_i) = \sigma^2 V_0$$
; (supondo homocedasticiadade),

e desta forma V_0 , de dimensão $n \times n$, é a matriz de correlação de Y_i .

Como as unidades formam uma amostra aleatória da população temos que $(Y=(Y_1'Y_2'\ldots Y_N')')$

$$Var(Y) = \sigma^2 V = \sigma^2 \left(egin{array}{cccc} V_0 & 0 & \cdots & 0 \\ 0 & V_0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & V_0 \end{array}
ight)$$

Modelo linear para a Média

$$E(Y_{ij}) = \beta_1 X_{ij1} + \beta_2 X_{ij2} + \dots + \beta_p X_{ijp}$$

- A média é uma combinação linear dos parâmetros.
- A forma funcional da média deve ser baseada na análise exploratória dos dados ou/e em informação histórica.
- Uma possibilidade é utilizar termos polinomiais e splines para o comportamento temporal e de covariáveis tempo-dependentes.
- Outra possibilidade é tratar o componente temporal como categórico.

Exemplos de Formas para V_0

1- Simetria Composta ou esférica

$$V_0 = [(1 - \rho)I_n + \rho 1_n 1_n']$$

em que

$$1_n 1_n' = \left[\begin{array}{ccc} 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{array} \right]_{n \times n}$$

Ou seja, $1'_n=(1,1,\cdots,1)$ que é um vetor de n 1's.

Justificativa

$$Y_{ij} = X'_{ij}\beta + U_i + \varepsilon_{ij}$$

O intercepto é o único termo com variação aleatória.

A diferença entre os indivíduos está explicada pelo intercepto aleatório:

$$U_i \sim N(0, \sigma_u^2)$$

 $\varepsilon_{ij} \sim N(0, \sigma^2),$

em que U_i e ε_{ii} são independentes.

2- Autoregressivo (AR(1)):

$$V_0 = \left[egin{array}{ccccc} 1 & V_{12} & V_{13} & \cdots & V_{1n} \ & 1 & V_{23} & \cdots & V_{2n} \ & & \ddots & & & \ & & & 1 \end{array}
ight]$$

$$V_{ii'} = \rho^{|t_j - t_{i'}|}$$

ou

$$V_{jj'} =
ho^{|j-j'|},$$
 se for balanceado e equidistante.

Justificativa

$$\varepsilon_{ij} = \rho \varepsilon_{ij-1} + Z_{ij},$$

$$Z_{ij} \sim N(0, \sigma^2(1-\rho^2)),$$

em que ε_{ij} e Z_{ij} são independentes.

Então,

$$Var(arepsilon_{ij}) =
ho^2 \sigma^2 + \sigma^2 (1 -
ho^2) = \sigma^2$$
 $Cov(arepsilon_{ij}, arepsilon_{ij-1}) = Cov(
ho arepsilon_{ij-1} + Z_{ij}, arepsilon_{ij-1}) =
ho \sigma^2$ e

para lags maiores que 1,

$$Cov(\varepsilon_{ij}, \varepsilon_{ij-k}) = \rho^k \sigma^2.$$

3- Toeplitz: Extensão do AR(1)

$$V_0 = \begin{bmatrix} 1 & \rho_1 & \rho_2 & \cdots & \rho_{n-1} \\ \rho_1 & 1 & \rho_1 & \cdots & \rho_{n-2} \\ \rho_2 & \rho_1 & \ddots & & \rho_{n-3} \\ & & & 1 \end{bmatrix}$$

De uma forma geral,

$$Cor(Y_{ij}, Y_{ij+k}) = \rho_k$$

Esta estrutura somente é válida para desenhos balanceados e equidistantes.

4- Banded:

$$V_0 = \left[egin{array}{cccc} 1 &
ho_1 & 0 & \cdots & 0 \
ho_1 & 1 &
ho_1 & \cdots & 0 \ 0 &
ho_1 & \cdots & 0 \ & & & 1 \end{array}
ight]$$

Caso particular do Toeplitz quando fazemos ,

$$\rho_2=\rho_3=\cdots\rho_{n-1}=0$$

5- Modelos Híbridos:

$$Cov(Y_i) = \sigma_1^2 V_1 + \sigma_2^2 V_2,$$

 V_1 é de simetria composta e V_2 é AR(1).

Se nenhuma forma estruturada for adequada para um particular conjunto de dados, devemos utilizar a forma não-estruturada.

6- Não Estruturada:

$$Cov(Y_{ij}, Y_{ij'}) = \sigma_{jj'}$$

Ou seja, temos n(n+1)/2 parâmetros ou, sob homocedasticidade, $\frac{n(n-1)}{2}+1$.

Inferência em Modelos Lineares: Estimador de Mínimos Quadrados Generalizados

Se V_0 é conhecido, pode-se encontrar o Estimador de Mínimos Quadrados (generalizados).

$$\hat{\beta}_{MQG} = (X'V^{-1}X)^{-1}X'V^{-1}y$$

Ideia:

Toda matriz positiva definida pode ser escrita como

$$V = KK'$$
 K é não singular (existe inversa de K)

Redefina o modelo como $Z = B\beta + \eta$, em que:

$$Z = K^{-1}Y$$

$$B = K^{-1}X$$

$$\eta = K^{-1}\varepsilon$$

$$Var(Z) = Var(K^{-1}\varepsilon)$$

$$= K^{-1}Var(\varepsilon)K^{-1'}$$

$$= \sigma^2 K^{-1}KK'(K')^{-1}$$

$$= \sigma^2 I_{Nn}$$

Desta forma, retornamos a condição de Mínimos Quadrados Ordinários.

Equações Normais

$$\varepsilon'\varepsilon = (z - B\beta)'(z - B\beta)$$

$$= (y - X\beta)'V^{-1}(y - X\beta)$$

$$= \sum_{i=1}^{N} (y_i - X_i\beta)'V_0^{-1}(y_i - X_i\beta)$$

Resolver o sistema de equações:

$$\partial \varepsilon' \varepsilon / \partial \beta = 2X' V^{-1} (y - X \beta)$$
$$= \sum_{i=1}^{N} X_i' V_0^{-1} (y_i - X_i \widehat{\beta}) = 0$$

Então

$$\hat{\beta} = (B'B)^{-1}B'z$$

$$= (X'K^{-1'}K^{-1}X)^{-1}X'K^{-1'} \cdot K^{-1}y$$

$$= (X'K^{-1'}K^{-1}X)^{-1}X'(KK')^{-1}y$$

$$= (X'V^{-1}X)^{-1}X'V^{-1}y$$

$$= (\sum_{i=1}^{N} X_i'V_0^{-1}X_i)^{-1}(\sum_{i=1}^{N} X_i'V_0^{-1}y_i)$$

$$Var(\hat{\beta}) = \sigma^2(X'V^{-1}X)^{-1}$$

е

Resumo: EMQG

Modelo Linear:

$$Y_i = X_i \beta + \varepsilon_i$$

tal que $E(\varepsilon_i)=0$, $Var(\varepsilon_i)=\sigma^2 V_0$ e V_0 é a matriz de correlação de Y_i .

Restrição: homocedasticidade (não é necessário mas conveniente).

$$\hat{eta}_{MQG} = (X'V^{-1}X)^{-1}X'V^{-1}Y,$$
 não depende de σ^2 ,

V: verdadeira estrutura de correlação para Y_i

$$Var(\hat{\beta}_{MQG}) = \sigma^2 (B'B)^{-1} = \sigma^2 (X'V^{-1}X)^{-1}$$

O EMQG somente é válido se V for conhecida.

Modelo Marginal

Pergunta: Em situações reais V não é conhecido. O que devemos fazer?

Resposta usual: Utilizar o Método de Máxima Verossimilhança (usual ou restrito) para estimar β e também os componentes de variância.

Estimador de Máxima Verossimilhança

Encontrar simultaneamente o estimador da média (β) e o estimador para os componentes de variância (σ^2, α) . Seja

$$Y_i \sim N_n(X_i\beta, \sigma^2 V_0(\alpha))$$

$$f(y_i|\beta,\sigma^2,\alpha,X_i) = \frac{1}{(2\pi)^{n/2}|V_0|^{1/2}(\sigma^2)^{n/2}} exp\left\{-\frac{1}{2\sigma^2}Q_i\right\}$$

em que

$$Q_i = (y_i - X_i \beta)' V_0^{-1} (y_i - X_i \beta)$$

Revisão - Teoria de Verossimilhança - Uma única observação por indivíduo

Considere Y_1, Y_2, \ldots, Y_N respostas iid de uma população $f(y; \theta)$. Então a função de verossimilhança para θ é dada por

$$L(\theta/y) = \prod_{i=1}^{N} f(y_i/\theta),$$

em que θ é o vetor de parâmetros a ser estimado.

O EMV (Estimador de Máxima Verossimilhança) é aquele $\widehat{\theta}$ que maximiza $L(\theta/y)$ ou, de forma equivalente, $I(\theta/y) = log(L(\theta/y))$ no espaço de parâmetros de θ .

Revisão - Teoria de Verossimilhança: Função Escore

$$S(\theta) = \frac{\partial I(\theta/y)}{\partial \theta},$$

que é p-dimensional.

O EMV é a solução do sistema de equações determinado pela função escore:

$$S(\widehat{\theta}) = 0.$$

Propriedade importante: $E(S(\theta)) = 0$.

Revisão - Teoria de Verossimilhança: Medida de Incerteza

$$\Im(\theta) = Var(S(\theta))
= E(S(\theta)^{2})
= -E\left(\frac{\partial^{2}I(\theta)}{\partial\theta\partial\theta'}\right),$$

que é uma matriz $p \times p$, chamada de Informação de Fisher.

A variância assintótica de $\widehat{\theta}$ é

$$Var(\hat{\theta}) = \Im(\theta)^{-1}$$

que é estimada avaliando θ em $\widehat{\theta}$.

Revisão - Teoria de Verossimilhança: Medida de Incerteza

Usualmente é díficil encontrar o valor esperado na distribuição de Y. No entanto, podemos utilizar qualquer estimador consistente de \Im .

A matriz de informação observada

$$I(\theta) = -\left(\frac{\partial^2 I(\theta)}{\partial \theta \partial \theta'}\right),$$

é consistente para $\Im(\theta)$, sob certas condições de regularidade.

Ou seja,

$$Var(\widehat{\theta}) \approx I(\theta)^{-1}$$
.

Obs. O resultado é verdadeiro para qualquer estimador consistente de \Im .

Revisão - Teoria de Verossimilhança: Estatísticas

- Wald
- 2 Razão de Verossimilhança
- Escore

Estimador de Máxima Verossimilhança - Dados longitudinais

A função de Verossimilhança:

$$L(\beta, \sigma^2, \alpha) = \prod_{i=1}^{N} f(y_i | \beta, \sigma^2, \alpha, X_i)$$

e a função de log-verossimilhança:

$$I(\beta, \sigma^{2}, \alpha) = - \frac{nN}{2} \left[log(2\pi) + log(\sigma^{2}) \right] - \frac{N}{2} log(|V_{0}|) - \frac{1}{2\sigma^{2}} \sum_{i=1}^{N} \left\{ (y_{i} - X_{i}\beta)' V_{0}^{-1} (y_{i} - X_{i}\beta) \right\}$$

Observações:

- lacktriangle O vetor de parâmetros eta somente aparece no último termo;
- ② Se V_0 e σ^2 forem fixos , o estimador de eta consiste em minimizar :

$$\sum_{i=1}^{N} (y_i - X_i \beta)' V_0^{-1} (y_i - X_i \beta)$$

cuja solução é:

$$\hat{\beta}_{MQG} = (X'V^{-1}X)^{-1}X'V^{-1}Y$$

3 Sob heterocedasticidade, as variâncias são absorvidas em V_0 . Ou seja, $Var(Y_i) = V_0$ e V_0 não é mais a matriz de correlação.

Verossimilhança Perfilada

Usando verossimilhança perfilada para obter o EMV de β, σ^2 e α :

1. fixamos inicialmente V_0 (por exemplo, $V_0 = I_n$), e σ^2 e obtemos:

$$\hat{\beta}(\alpha) = (X'V^{-1}X)^{-1}X'V^{-1}Y$$

2. Em seguida substuimos β por $\hat{\beta}(\alpha, \sigma^2)$ em

$$I(\hat{\beta}, \alpha, \sigma^2) \propto \frac{-N}{2} \left(n \log(\sigma^2) + \log(|V_0|) \right) - \frac{1}{2\sigma^2} \sum_{i=1}^{N} \left[(y_i - X_i' \hat{\beta}) V_0^{-1} (y_i - X_i' \hat{\beta}) \right]$$

Verossimilhança Perfilada

Tomando V_0 fixo temos:

$$\hat{\sigma}^{2}(\alpha) = \frac{\sum\limits_{i=1}^{N} (y_{i} - X_{i}\hat{\beta})' V_{0}^{-1}(y_{i} - X_{i}\hat{\beta})}{Nn}$$
$$= \frac{SQR}{Nn}$$

3. Substituindo em $I(\hat{\beta}, \alpha, \hat{\sigma}^2)$, obtemos:

$$I(\hat{\beta}, \alpha, \hat{\sigma}^2) \propto \frac{-N}{2} \left(n \log \left(\frac{SQR}{nN} \right) + \log |V_0| \right) - \frac{nN}{2}$$

$$\propto \frac{-N}{2} \left(n \log SQR - n \log(nN) + \log |V_0| \right) - \frac{nN}{2}$$

$$\propto \frac{-N}{2} \left(n \log SQR + \log |V_0| \right)$$

Verossimilhança Perfilada

O estimador de lpha envolve a maximização de

$$I(\hat{\beta}, \alpha, \hat{\sigma}^2)$$

- ullet Finalmente após obtermos \hat{V}_0 , atualizamos eta e σ^2 até a convergência.
- A maximização com respeito a α exige o cálculo de determinantes e inversas. Isto indica a necessidade de métodos numéricos.

Estruturação de Vo

Simétrica Composta e AR(1): 2 componentes de variância:

Total de parâmetros
$$= p + 1 + 1$$

3 Não Estruturada homocedástica: $\frac{n(n-1)}{2}$ componentes de variância:

Total de parâmetros =
$$\frac{n(n-1)}{2} + p + 1$$

Não Estruturado heterocedástica :

Total de parâmetros =
$$p + \frac{n(n+1)}{2}$$

Propriedades de $\hat{\beta}_{EMV}$ (ASSINTÓTICAS)

- $\hat{\beta}_{EMV}$ é consistente para β ;
- $\hat{\beta}_{EMV}$ é assintóticamente normal (Wald):

$$\sqrt{Nn}(\hat{\beta}_{EMV} - \beta) \stackrel{\mathcal{D}}{\longrightarrow} N(0, \Im^{-1})$$

- Estas propriedades valem assintoticamente, mesmo se yi não tiver distribuição normal multivariada (para dados completos).
- Usamos as estatísticas: WALD e da RV.
- Teste para σ^2 envolve a fronteira do espaço de parâmetros. As estatística Wald e RV têm uma distribuição de referência que é uma combinação de qui-quadrados.

Propriedades de $\hat{\beta}_{EMV}$ (ASSINTÓTICAS)

- As distribuições de referência (assintótica) normal e qui-quadrado são utilizadas como aproximações da t e da F, respectivamente. É possível estimar os gl para utilizar a t e a F, especialmente para amostras de tamanho pequeno.
 - 7 O valor-p obtido através da estatística de Wald é menor do que o verdadeiro (e será tão menor quanto menor for o tamanho da amostra).
 - 8 Devemos evitar o uso da estatística de Wald para testar os componentes de variância (α e σ^2) pois a taxa de convergência para normal é lenta para amostras pequenas e variâncias próximas de zero. Desta forma, o recomendado é a estatística da razão de verossimilhança.

Estatística de Wald e da RV

$$H_0: \beta_k = 0$$
 versus $H_1: \beta_k \neq 0$

Wald

$$Z = \frac{\beta_k}{\sqrt{\widehat{Var}(\widehat{\beta_k})}},$$

em que $\widehat{Var}(\widehat{\beta}_k)$ é elemento da diagonal de $\widehat{Var}(\widehat{\beta})$, correspondente a $\widehat{\beta}_k$. Sob H_0 , Z tem aproximadamente uma distribuição normal padrão.

TRV

$$RV = 2(\widehat{I}_{Irrest.} - \widehat{I}_{Rest.}),$$

Sob H_0 , Z tem aproximadamente uma distribuição qui-quadrado com 1 gl.

Estimação Conjunta (β, α)

- EMV;
- 2 EMVR (Estimador de Máxima Verossimilhança Restrita).

EMV (σ^2 é absorvido em V_0)

$$I(\beta, \alpha) = \frac{-nN}{2}log(2\pi) - \frac{N}{2}log|V_0| - \frac{1}{2}\sum_{i=1}^{N}(y_i - X_i\beta)'V_0^{-1}(y_i - X_i\beta)$$

Propriedades do EMV: $\hat{\beta}$ é consistente e assintoticamente Normal (para dados completos).

Estatísticas: Wald e RV (Inferência para β).

Estimador de Máxima Verossimilhança Restrita (ou Residual)

Modelo linear-normal transversal EMV (amostra de tamanho N)

$$\hat{\sigma}^2 = \frac{SQR}{N} = \frac{(y - X\hat{\beta})'(y - X\hat{\beta})}{N}$$
$$E[\hat{\sigma}^2] = \frac{N}{N - p}\sigma^2$$

- Razão: EMV não leva em consideração que eta é estimado pelos dados;
- Proposta: utilizar EMVR (Estimador Máxima Verossimilhança Restrita);
- Ideia: Separar as partes dos dados para estimar α daqueles utilizados para estimar β .

Transformar a resposta Y tal que a distribuição resultante não dependa de β .

Por exemplo, a distribuição dos resíduos após estimarmos β por mínimos quadrados.

Ou seja,

$$Z = AY$$
 tal que $E(Z) = 0$

Exemplo: Modelo Linear-Normal Transversal

$$A = I - H = I - X(X'X)^{-1}X'$$

$$E(Z) = (I - X(X'X)^{-1}X')E(Y) = X\beta - X(X'X)^{-1}X'X\beta = 0$$

Transformação $y \to (Z, \hat{\beta})$

A função de log-verossimilhança para Z escrita em termos de Y e \hat{eta} é:

$$I^*(\alpha) = -\frac{1}{2} \sum_{i=1}^{N} \log |V_0| - \frac{1}{2} \sum_{i=1}^{N} (y_i - X_i \hat{\beta})' V_0^{-1} (y_i - X_i \hat{\beta}) - \frac{1}{2} \log \left| \sum_{i=1}^{N} X_i' V_0^{-1} X_i \right|$$

Justificativa: Na ausência de informação de β , nenhuma informação sobre α é perdida se a inferência para α for feita por $I^*(\alpha)$ ao invés de $I(\alpha)$.

Observação

O termo adicional da função de log-verossimilhança restrita:

$$-\frac{1}{2}\log\left|\sum_{i=1}^{N}X_{i}'V_{0}^{-1}X_{i}\right|=\log|Var(\widehat{\beta})|^{1/2}.$$

Este termo é o equivalente a fazer a correção no denominador de $\widehat{\sigma}^2$.

Processo de Estimação: EMVR

• Estimar β por:

$$\begin{split} \hat{\beta} &= (X'V^{-1}X)^{-1}XV^{-1}Y \\ &= \left(\sum_{i=1}^{N} X_i'V_0^{-1}X_i\right)^{-1} \left(\sum_{i=1}^{N} X_i'V_0^{-1}y_i\right); \end{split}$$

- 2 Encontra, o EMVR para α a partir de $I^*(\alpha)$;
- Ontinuar este processo até a convergência.

Processo de Estimação: EMVR

- O EMVR é recomendado para α quando comparado ao EMV. No entanto, a correção do vício se torna desprezível quando Nn é muito maior que p;
- No pacote lme/nlme do R, EMVR é o "default"do ajuste do modelo.
- A estatística da Razão de MVR pode ser usado para comparar modelos de covariâncias aninhadas mas não pode ser utilizado para comparar modelos aninhados para a média. Neste caso devemos usar o EMV.

Em resumo....: Modelos Lineares/Marginais para Dados Longitudinais

$$Y_i = X_i \beta + \varepsilon_i$$

- **1** Modelar a resposta média $E(Y_{ij})$; $i=1,\ldots,N$; $j=1,\ldots,n$.
- ② Modelar a Estrutura de Variância-Covariância $Var(Y_i)$.
- Assumir uma distribuição (normal) para a resposta contínua (necessário para EMV ou EMVR).

Em resumo....: Inferência para Modelos Lineares/Marginais

Suposição básica: $E(Y_{ij})$ corretamente modelada.

- \bigcirc MQG: $Var(Y_i)$ conhecida
 - $\hat{eta}_{MQG}=(X'V^{-1}X)^{-1}X'V^{-1}Y,$ não depende de σ^2 ,

fica bem estimada, mesmo se $Var(Y_i)$ for mal especificada, e

$$Var(\hat{\beta}_{MQG}) = \sigma^2 (X'V^{-1}X)^{-1}$$

somente valida se $Var(Y_i)$ for corretamente especificada.

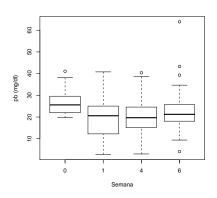
- sob a suposição de normalidade, valem os testes exatos: F, t.
- EMV e EMVR: Y tem distribuição normal.
 - Estima os componentes de variância. Somente valido (eficiente) se $Var(Y_i)$ for corretamente modelada.
 - EMVR deve ser preferido para estimar componentes de variância.
 - Estatísticas: Wald e RV.

Exemplo: Níveis de chumbo no sangue (FLW, 2011)

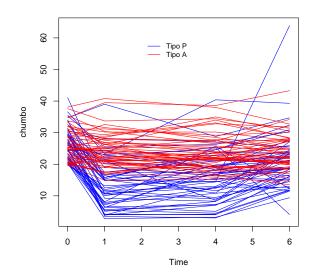
- O Descrição
 - Tratamento de Crianças Expostas ao chumbo.
 - Estudo clínico aleatorizado para placebo e um tratamento em criança com níveis de chumbo no sangue entre 20-44 micrograms/dL.
 - Quatro medidas repetidas de níveis de chumbo na linha de base semana 0, semana 1, semana 4 e semana 6 (desenho balanceado mas não igualmente espaçado).
 - 100 crianças aleatoriamente alocadas entre tratamento e placebo.
- Banco de Dados Largo com as seguintes colunas:
 - ID,
 - Groupo,
 - Week0,
 - Week1,
 - Week4,
 - Week6.

Exemplo: Níveis de chumbo no sangue: Estatísticas Descritivas

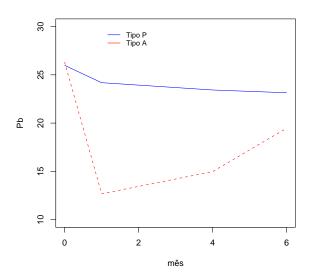
Semana	Mínimo	1º Quartil	Mediana	Média	3º Quartil	Máximo	
0	19.70	22.05	25.60	26.41	29.60	41.10	
1	2.80	12.38	20.60	19.09	25.02	40.80	
4	3.00	15.25	19.70	19.79	24.60	40.40	
6	4.10	18.25	21.25	22.20	25.60	63.90	



Exemplo: Níveis de chumbo no sangue: Perfis



Exemplo: Níveis de chumbo no sangue: Médias por Grupo e Tempo



Estrutura de Correlação Saída do R

> round(cor(datawide[,3:6]),3) # matriz de correlação dos dados #deveria ser feito com resíduos

	dados.weeku	dados.weeki	dados.week4	dados.weeko
${\tt dados.Week0}$	1.000	0.419	0.468	0.562
${\tt dados.Week1}$	0.419	1.000	0.845	0.557
${\tt dados.Week4}$	0.468	0.845	1.000	0.583
dados.Week6	0.562	0.557	0.583	1.000

Cuidado: esta estrutura deve ser avaliada nos resíduos e não nos dados brutos.

Exemplo: Níveis de chumbo em Crianças

- Modelo Não-Estruturado para a média (intercepto comum): (R: $y \sim \text{factor(tempo)*factor(grupo)}$).
- Comparando estruturas para $Var(Y_i)$.
- Estimativas para média e erro-padrão para os coeficientes dos termos da interação.

Coeficiente	Independente		Simetria Composta		AR1		Não Estruturada	
	Est.	EP	Est.	EP	Est.	EP	Est.	EP
Linha base	-0,268	1,325	-0,268	1,325	-0,268	1,318	-0,268	1,326
1a semana	11,406	1,874	11,406	1,192	11,406	1,132	11,406	1,192
4a semana	8,824	1,874	8,824	1,192	8,824	1,446	8,824	1,121
6a semana	3,152	1,874	3,152	1,192	3,152	1,612	3,152	1,278

Exemplo: Chumbo em Crianças

- Modelo Não-Estruturado para a média.
- ② Algumas estruturas para $Var(Y_i)$.
- **3** Estimativas dos parâmetros da média (β) não mudam ao estruturarmos $Var(Y_i)$.
- O mesmo não acontece com as estimativas dos erros-padrão. Observe a diferença, principalmente entre a independente e as demais.