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Resumo

Dados com censura intervalar ocorrem com frequéncia em estudos de diversas areas,
em situacoes em que o evento de interesse é observado com periodicidade. Neste
caso, o tempo exato da ocorréncia nao ¢ conhecido (observado), porém sabe-se que o
evento ocorreu dentro de um intervalo (conhecido) de tempo. Este tipo de observa-
cao ¢ tratada em anédlise de sobrevivéncia usando técnicas apropriadas que considera
a presenca de censuras intervalar. Considerando este tipo de censura, neste traba-
lho, apresentamos resultados de estimagao pontual e intervalar dos parametros de
interesse, via algoritmo EM sob a abordagem cléssica. Sob a abordagem Bayesiana,
obtivemos estimativas pontuais e, para as intervalares, apresentamos uma alternativa
ao método proposto por Pradhan e Kundu (2014). Dados reais e simulados foram
utilizados para ilustrar a teoria estudada.

Introducao

Tempos até a ocorréncia de um evento de interesse sao objetos de estudo na area
de sobrevivéncia/confiabilidade. Porém, nem sempre o tempo exato da ocorréncia
do evento é conhecido e estes sao, geralmente, denominados censuras. Neste caso,
temos informagoes parciais a respeito do tempo de ocorréncia.

Existem varios tipos de censuras, como por exemplo, a direita, a esquerda e
intervalar. A censura é umas das caracteristicas dos tempos na drea de sobrevivéncia.
Outra caracteristica de dados de sobrevivéncia é o agrupamento, o que ocorre quando
as unidades de estudo sao avaliadas nos mesmos tempos, sendo este um caso de
censura intervalar.

De acordo com o tipo considerado no planejamento do estudo, definimos os méto-
dos de estimagao dos parametros e/ou para a fungao dos parametros, como por exem-
plo, a fungao de sobrevivéncia/confiabilidade, sob as abordagens cléssica, Bayesiana
e nao-paramétrica, dentre outras. Como exemplos de métodos nao-paramétricos, ci-
tamos os estimadores de Kaplan e Meier (1958), Turnbull (1976), e de Nelson-Aalen
(Nelson (1972) e Aalen (1978)); no caso semi-paramétrico citamos os modelos de Cox



(1972) e na abordagem cldssica, os modelos de regressao e os modelos paramétricos,
sendo que os mais usados sao exponencial, Weibull, log-normal e gama. Porém,
estes estimadores nao sao indicados para o caso de censura intervalar, objeto de es-
tudo neste trabalho. Strapasson (2007) cita alguns autores que propuseram fixar um
tempo dentro do intervalo no qual ocorreu o evento e aplicar os métodos usuais de
estimacao em andlise de sobrevivéncia.

Pradhan e Kundu (2014) apresentam varios métodos de estimagao pontual (al-
goritmo EM, aproximagao de Lindley e importance sampling) no caso de tempos
censurados de forma intervalar, com distribui¢ao exponencial e Weibull. Também,
os autores apresentam um algoritmo para a construcao de intervalos de confianca,
na abordagem Bayesiana.

Neste trabalho, consideramos estudos em que a resposta é o tempo até a ocorrén-
cia de um evento de interesse. Por exemplo, pacientes que foram observados durante
um periodo de tempo (especificado) e o tempo até a morte deste paciente foi regis-
trado. Neste caso a morte é o evento de interesse e o tempo é o objeto de estudo.
Para uma amostra de n pacientes e os respectivos registros dos tempos observados
ou intervalo de censura, apresentamos estimadores pontuais e intervalares, na abor-
dagem classica, para os parametros do modelo Weibull e funcao de sobrevivéncia,
aplicando este estudo em um conjunto de dados.

Material e metodologia

Suponha um conjunto de dados que representam tempos até a ocorréncia do
evento de interesse, para n observacoes. Os dados sao representados pelo par
(T;,6;),i = 1,...,n, em que T; representa o tempo (varidvel aleatéria continua e
nao-negativa) de ocorréncia do evento da i-ésima observacao e ¢; é a variavel indica-
dora de censura. Se o tempo até a ocorréncia do evento é observado, T; nao pertence
ao intervalo [L;, R;], em que L; é o limite inferior e R; é o limite superior do intervalo
de observagao. Desta forma, a observacao nao é censurada e portanto §; = 1. Para
observagoes em que o tempo de vida ocorre dentro do intervalo [L;, R;], e portanto,
o tempo exato é desconhecido, temos censura intervalar e entao 9; = 0.

Consideramos n unidades observacionais sendo que os tempos registrados sao de-
notados por (71, . .., T,,) e tempos censurados sao denotados por ([Ly, 11, Rny+1], - - -
(L, tnys Binytns)), Paran = nj+ny. Também, que os tempos seguem uma distribuigao
Weibull, ou seja, T ~ Wei(a, A), dada por:

fr(t; o, \) = axt* Texp{—Xt*}, t >0, a>0e > 0.



Usando as informagoes de tempos com censura intervalar, a funcao de verossimi-
lhanca é rescrita da seguinte forma:

ni - ni+ng
L(a, A|dados) = ca™ \™ Ht?_l e A= H (e — 77T, (1)
=1 i1=ni1+1

Observe que temos um problema de dados incompletos (censuras) e como alter-
nativa aos métodos usuais de estimacao, usamos o algoritmo EM. Este é uma ferra-
menta computacional que calcula o estimador de maxima verossimilhanca de forma
iterativa. Para aplicar este método, construimos um conjunto de dados completos,
formado pelos dados registrados aumentado com os faltantes. Desta forma, obte-
mos a fungao verossimilhanca associada aos dados completos, chamada de "pseudo-
verossimilhanca”.

O principio do algoritmo consta de uma sequéncia de maximizagoes, através de
dois passos. O primeiro é o passo "E” (esperanca), em que o valor esperado do loga-
ritmo da "pseudo-verossimilhanga” é calculado. O segundo é o passo "M” (maximi-
zacdo), em que a “"pseudo-verossimilhanga” formada no passo anterior é maximizada
(como apresentado em Dempster et al. (1977) e Wu (1983)).

O algoritmo, no caso de dados com distribuicao Weibull e censura intervalar, pode
ser descrito da seguinte forma:

e Passo E: denote as observagoes censuradas por Z;, sendo que Z; ~ Weibull(a; \)

it =mn1+1,...,n1 +ny. A funcao de verossimilhanca dos dados completos é
dada por:

ni ni+nz nytng

n
Lo(a,\) = a")\”th’l e A Tim H 2071 e A L 1 (2)
c ) 7 7 :

i=1 i=n1+1

Parai=mny+1,...,n1 + ng, os valores de Z; encontrados sao tais que:

O termo (e " — A7)

tais que:

é substituido por valores de Z, que sao encontrados

fi alz® e M dx
Zi=E(T|L; <T < R;) = Cj_ALg — ART




Desta o log da fungao de verossimilhanca é dado por:

ni+nz
le(,\) = nlna+nlnA+ (a—1) (Zlnt + Z lnz,>

i=n1+1
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Resumindo, o passo "E 7 é caracterizado pelo calculo da esperanca da distri-
buicao condicional (T'|L; < T < R;).

e Passo M: use os valores obtidos no passo "E” para maximizar o log da funcao
de verossimilhanca (equagao 3), com respeito a « e .

De forma iterativa obtemos os estimadores:

n
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Este é um processo iterativo e portanto deve ser realizado até se atingir a con-
vergéncia. Aqui, adotamos o seguinte critério de parada:

[AETD — A < €

(1) _ ()

la I<e

em que € é um valor pré-fixado maior que zero.



Resultados

Para ilustrar a teoria, simulamos os tempos e intervalos de censura com os mesmo
valores de parametros de Pradhan e Kundu (2014), mostrados abaixo.

0,882 1,1739 0,4123 0,4565 1,9935 1,0662 1,3516 0,313
1,3364 1,6493 0,3 08187 0,0253 0,6841 0,2672 1,1791
0,346 0,8371 10,9184 0,8331 0,5123 0,1045 0,2159 0,0992

e os intervalos sao: [0, 7286; 2, 7756][0,4465; 1, 7119][0, 0204; 2, 7927] [0, 6566; 1,9712]
[1,5674;2,4757][0,1700; 2, 3342].

No processo iterativo aplicando o algoritmo EM obtemos as estimativas pontuais
a=1,9227e A= 1,1037 e os intervalos com 95% de confianga para « e A, respectiva-
mente, sao (1,8851;1,9603) e (1,0671;1,1402). Os autores encontraram & = 1,4945
e A= 1,1864.

Proposta

As estimativas pontuais e intervalares no caso classico foram apresentadas e im-
plementadas no software R, para o caso da distribuicao Weibull. Sob o enfoque
Bayesiano, as estimativas pontuais foram obtidas. O foco deste trabalho é obter
estimativas intervalares, utilizando um método alternativo ao método apresentado
por Pradhan e Kundu (2014), que estao sendo estudadas e implementadas. No tra-
balho final, apresentaremos os resultados das estimacgoes pontuais e intervalares, no
enfoque Bayesiano.
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