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Resumo

Dados com censura intervalar ocorrem com frequência em estudos de diversas áreas,
em situações em que o evento de interesse é observado com periodicidade. Neste
caso, o tempo exato da ocorrência não é conhecido (observado), porém sabe-se que o
evento ocorreu dentro de um intervalo (conhecido) de tempo. Este tipo de observa-
ção é tratada em análise de sobrevivência usando técnicas apropriadas que considera
a presença de censuras intervalar. Considerando este tipo de censura, neste traba-
lho, apresentamos resultados de estimação pontual e intervalar dos parâmetros de
interesse, via algoritmo EM sob a abordagem clássica. Sob a abordagem Bayesiana,
obtivemos estimativas pontuais e, para as intervalares, apresentamos uma alternativa
ao método proposto por Pradhan e Kundu (2014). Dados reais e simulados foram
utilizados para ilustrar a teoria estudada.

Introdução

Tempos até a ocorrência de um evento de interesse são objetos de estudo na área
de sobrevivência/confiabilidade. Porém, nem sempre o tempo exato da ocorrência
do evento é conhecido e estes são, geralmente, denominados censuras. Neste caso,
temos informações parciais a respeito do tempo de ocorrência.

Existem vários tipos de censuras, como por exemplo, à direita, à esquerda e
intervalar. A censura é umas das caracteŕısticas dos tempos na área de sobrevivência.
Outra caracteŕıstica de dados de sobrevivência é o agrupamento, o que ocorre quando
as unidades de estudo são avaliadas nos mesmos tempos, sendo este um caso de
censura intervalar.

De acordo com o tipo considerado no planejamento do estudo, definimos os méto-
dos de estimação dos parâmetros e/ou para a função dos parâmetros, como por exem-
plo, a função de sobrevivência/confiabilidade, sob as abordagens clássica, Bayesiana
e não-paramétrica, dentre outras. Como exemplos de métodos não-paramétricos, ci-
tamos os estimadores de Kaplan e Meier (1958), Turnbull (1976), e de Nelson-Aalen
(Nelson (1972) e Aalen (1978)); no caso semi-paramétrico citamos os modelos de Cox
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(1972) e na abordagem clássica, os modelos de regressão e os modelos paramétricos,
sendo que os mais usados são exponencial, Weibull, log-normal e gama. Porém,
estes estimadores não são indicados para o caso de censura intervalar, objeto de es-
tudo neste trabalho. Strapasson (2007) cita alguns autores que propuseram fixar um
tempo dentro do intervalo no qual ocorreu o evento e aplicar os métodos usuais de
estimação em análise de sobrevivência.

Pradhan e Kundu (2014) apresentam vários métodos de estimação pontual (al-
goritmo EM, aproximação de Lindley e importance sampling) no caso de tempos
censurados de forma intervalar, com distribuição exponencial e Weibull. Também,
os autores apresentam um algoritmo para a construção de intervalos de confiança,
na abordagem Bayesiana.

Neste trabalho, consideramos estudos em que a resposta é o tempo até a ocorrên-
cia de um evento de interesse. Por exemplo, pacientes que foram observados durante
um peŕıodo de tempo (especificado) e o tempo até a morte deste paciente foi regis-
trado. Neste caso a morte é o evento de interesse e o tempo é o objeto de estudo.
Para uma amostra de n pacientes e os respectivos registros dos tempos observados
ou intervalo de censura, apresentamos estimadores pontuais e intervalares, na abor-
dagem clássica, para os parâmetros do modelo Weibull e função de sobrevivência,
aplicando este estudo em um conjunto de dados.

Material e metodologia

Suponha um conjunto de dados que representam tempos até a ocorrência do
evento de interesse, para n observações. Os dados são representados pelo par
(Ti, δi), i = 1, . . . , n, em que Ti representa o tempo (variável aleatória cont́ınua e
não-negativa) de ocorrência do evento da i-ésima observação e δi é a variável indica-
dora de censura. Se o tempo até a ocorrência do evento é observado, Ti não pertence
ao intervalo [Li, Ri], em que Li é o limite inferior e Ri é o limite superior do intervalo
de observação. Desta forma, a observação não é censurada e portanto δi = 1. Para
observações em que o tempo de vida ocorre dentro do intervalo [Li, Ri], e portanto,
o tempo exato é desconhecido, temos censura intervalar e então δi = 0.

Consideramos n unidades observacionais sendo que os tempos registrados são de-
notados por (T1, . . . , Tn1) e tempos censurados são denotados por ([Ln1+1, Rn1+1], . . . ,
[Ln1+n2 , Rn1+n2 ]), para n = n1+n2. Também, que os tempos seguem uma distribuição
Weibull, ou seja, T ∼ Wei(α, λ), dada por:

fT (t;α, λ) = αλtα−1 exp{−λtα}, t > 0, α > 0 e λ > 0.
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Usando as informações de tempos com censura intervalar, a função de verossimi-
lhança é rescrita da seguinte forma:

L(α, λ|dados) = cαn1λn1

n1∏
i=1

tα−1
i e−λ

∑n1
i=1 t

α
i

n1+n2∏
i=n1+1

(e−λt
α
i − e−λrαi ). (1)

Observe que temos um problema de dados incompletos (censuras) e como alter-
nativa aos métodos usuais de estimação, usamos o algoritmo EM. Este é uma ferra-
menta computacional que calcula o estimador de máxima verossimilhança de forma
iterativa. Para aplicar este método, constrúımos um conjunto de dados completos,
formado pelos dados registrados aumentado com os faltantes. Desta forma, obte-
mos a função verossimilhança associada aos dados completos, chamada de ”pseudo-
verossimilhança”.

O prinćıpio do algoritmo consta de uma sequência de maximizações, através de
dois passos. O primeiro é o passo ”E” (esperança), em que o valor esperado do loga-
ritmo da ”pseudo-verossimilhança” é calculado. O segundo é o passo ”M” (maximi-
zação), em que a ”pseudo-verossimilhança” formada no passo anterior é maximizada
(como apresentado em Dempster et al. (1977) e Wu (1983)).

O algoritmo, no caso de dados com distribuição Weibull e censura intervalar, pode
ser descrito da seguinte forma:

• Passo E: denote as observações censuradas por Zi, sendo que Zi ∼ Weibull(α;λ),
i = n1 + 1, . . . , n1 + n2. A função de verossimilhança dos dados completos é
dada por:

Lc(α, λ) = αnλn
n1∏
i=1

tα−1
i e−λ

∑n1
i=1 t

α
i

n1+n2∏
i=n1+1

zα−1
i e−λ

∑n1+n2
i=n1+1 z

α
i . (2)

Para i = n1 + 1, . . . , n1 + n2, os valores de Zi encontrados são tais que:

O termo (e−λt
α
i − e−λrαi ) é substitúıdo por valores de Z, que são encontrados

tais que:

Zi = E(T |Li < T < Ri) =

∫ Ri
Li
αλxα e−λx

α
dx

e−λL
α
i − e−λRαi

.
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Desta o log da função de verossimilhança é dado por:

lc(α, λ) = n lnα + n lnλ+ (α− 1)

(
n1∑
i=1

ln ti +

n1+n2∑
i=n1+1

ln zi

)

−λ

(
n1∑
i=1

ln tαi +

n1+n2∑
i=n1+1

ln zαi

)
. (3)

Resumindo, o passo ”E ” é caracterizado pelo cálculo da esperança da distri-
buição condicional (T |Li < T < Ri).

• Passo M: use os valores obtidos no passo ”E” para maximizar o log da função
de verossimilhança (equação 3), com respeito a α e λ.

De forma iterativa obtemos os estimadores:

λ(k+1)(α) =
n∑n1

i=1 t
α
i +

∑n1+n2

i=n1+1 z
α
i (α, λ(k))

,

e

α(k+1)(λ) = n

(∑n1

i=1 t
α
i ln t+

∑n1+n2

i=n1+1 z
α
i (α(k), λ(k)) ln zi(α

(k), λ(k))∑n1

i=1 t
α
i +

∑n1+n2

i=n1+1 z
α
i (α(k), λ(k))

)−1

−n

(
n1∑
i=1

ti +

n1+n2∑
i=n1+1

ln zi(α
(k), λ(k)

)
.

Este é um processo iterativo e portanto deve ser realizado até se atingir a con-
vergência. Aqui, adotamos o seguinte critério de parada:∥∥λ(k+1) − λ(k)

∥∥ < ε

e ∥∥α(k+1) − α(k)
∥∥ < ε

em que ε é um valor pré-fixado maior que zero.
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Resultados

Para ilustrar a teoria, simulamos os tempos e intervalos de censura com os mesmo
valores de parâmetros de Pradhan e Kundu (2014), mostrados abaixo.

0,882 1,1739 0,4123 0,4565 1,9935 1,0662 1,3516 0,313
1,3364 1,6493 0,3 0,8187 0,0253 0,6841 0,2672 1,1791
0,346 0,8371 0,9184 0,8331 0,5123 0,1045 0,2159 0,0992

e os intervalos são: [0, 7286; 2, 7756][0, 4465; 1, 7119][0, 0204; 2, 7927] [0, 6566; 1, 9712]
[1, 5674; 2, 4757][0, 1700; 2, 3342].

No processo iterativo aplicando o algoritmo EM obtemos as estimativas pontuais
α̂ = 1, 9227 e λ̂ = 1, 1037 e os intervalos com 95% de confiança para α e λ, respectiva-
mente, são (1, 8851; 1, 9603) e (1, 0671; 1, 1402). Os autores encontraram α̂ = 1, 4945
e λ̂ = 1, 1864.

Proposta

As estimativas pontuais e intervalares no caso clássico foram apresentadas e im-
plementadas no software R, para o caso da distribuição Weibull. Sob o enfoque
Bayesiano, as estimativas pontuais foram obtidas. O foco deste trabalho é obter
estimativas intervalares, utilizando um método alternativo ao método apresentado
por Pradhan e Kundu (2014), que estão sendo estudadas e implementadas. No tra-
balho final, apresentaremos os resultados das estimações pontuais e intervalares, no
enfoque Bayesiano.
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