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Resumo

A modelagem de variáveis cont́ınuas pertencentes a um intervalo do tipo (0,1) é necessária
em diversas aplicações, e permite o tratamento de dados como proporções, taxas e frações. O
desenvolvimento de modelos de regressão que se adequem à estas caracteŕısticas, tem sido o
foco principal de muitos trabalhos publicados nas últimas décadas. No contexto da modelagem
conjunta para dados longitudinais e de sobrevivência, poucos trabalhos atentam para o uso de
distribuições adequadas para a componente longitudinal, sendo comumente empregado o uso de
transformações dos dados. Neste trabalho, propomos uma extensão deste tipo de modelagem
conjunta, através do uso de modelos de regressão beta com efeitos mistos para explicar as
medidas longitudinais associadas. Partimos de uma motivação proveniente de um estudo sobre
qualidade de vida e tempo de sobrevivência, realizado em dois hospitais públicos brasileiros
especializados no tratamento do câncer: o Instituto do Câncer Dr. Octávio Frias de Oliveira
(ICESP) e a Fundação Pio XII (Hospital do Câncer de Barretos). Utilizamos este conjunto de
dados para ajustar os parâmetros do modelo proposto, obtendo, entre outros resultados, uma
medida de associação estimada entre as duas respostas observadas, considerada atualmente
como um fator essencial na indicação de cirurgias ou procedimentos médicos.

1 Introdução

Os estudos longitudinais consistem na observação repetida de uma variável, feita em diferen-
tes instantes de tempo para cada indiv́ıduo da amostra. Nas pesquisas da área médica este tipo
de coleta de dados permite observar, além da resposta longitudinal e de covariáveis relevantes
ao estudo, o tempo até a ocorrência de um evento de interesse para a investigação, como por
exemplo o óbito de um paciente durante o peŕıodo de um tratamento.

Uma forma de analisar dados com estas caracteŕısticas é considerar separadamente a variável
longitudinal e o tempo até a ocorrência do evento. Apesar da atrativa facilidade de execução
desta abordagem, através do uso de modelos bem consolidados na literatura para cada uma das
variáveis, em muitas situações é natural que exista algum tipo de associação entre estas duas res-
postas, o que conduz ao desenvolvimento de modelos que expliquem de forma apropriada esta
relação. Nesta direção, existe na literatura uma grande diversidade de trabalhos envolvendo
modelos conjuntos para variáveis longitudinais e tempo até a ocorrência de um evento (no-
meadamente o tempo de sobrevivência). Utilizaremos, de maneira abreviada, a nomenclatura
modelos conjuntos para nos referir a modelos especificados dentro deste contexto.
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No presente trabalho, o interesse principal reside na análise do tempo de sobrevivência. Uma
abordagem posśıvel neste caso é utilizar os dados longitudinais como covariáveis que variam ao
longo do tempo, associando a elas um erro de medida. A extensão do modelo de Cox para
variáveis dependentes do tempo, utilizada inicialmente para incorporar a relação entre os dados
longitudinais e o tempo de sobrevivência, apresenta fortes restrições que, em algumas aplicações,
são dif́ıceis de serem satisfeitas. É o que acontece com as imposições feitas sobre as covariáveis,
que devem ser externas e não relacionadas ao mecanismo de falha. A inclusão covariáveis
internas no modelo de Cox não é recomendada. Segundo Prentice (1982) esta prática pode
gerar viés, uma vez que a observação é obtida com algum grau de incerteza.

O uso inadequado da extensão do modelo de Cox para variáveis dependentes do tempo
motivou o surgimento de novas metodologias na modelagem conjunta, que visam diminuir o
viés causado ao não se levar em conta os erros de medição associados às variáveis longitudinais.
Basicamente, um modelo conjunto é constrúıdo através de uma componente longitudinal, uma
componente para a variável tempo de sobrevivência, e uma estrutura de ligação que relaciona as
duas variáveis. A especificação mais usual para explicar o processo longitudinal tem sido feita
através de modelos lineares com efeitos mistos. Esta formulação é detalhadamente abordada
em Rizopoulos (2012).

Nos últimos anos algumas extensões foram propostas a fim de se obter uma modelagem
mais flex́ıvel para os perfis longitudinais. Ding & Wang (2008) propõe o uso de B-splines para
modelar a trajetória média da componente longitudinal dos modelos conjuntos. Mais recente-
mente, Huong et al. (2017) considera P-splines com base polinomial truncada para parametrizar
o processo longitudinal não linear. Vale ressaltar que, apesar da flexibilidade destas propostas,
o aumento da dimensão dos efeitos aleatórios causados pelo processo de suavização traz bas-
tante dificuldade de implementação computacional. Além disso, estas extensões se baseiam na
normalidade das medidas longitudinais, não considerando seus devidos intervalos de variação.

Neste trabalho desenvolvemos uma extensão para os modelos conjuntos, com medidas lon-
gitudinais pertencentes ao intervalo (0,1), considerando para esta componente o modelo de
regressão beta com efeitos mistos. Organizamos este artigo da seguinte maneira: na Seção 1
apresentamos a especificação do modelo conjunto, através da formulação dos submodelos lon-
gitudinal e de sobrevivência; na Seção 2 encontram-se aspectos relacionados ao processo de
estimação dos parâmetros; na Seção 3 consideramos uma aplicação, utilizando dados de quali-
dade de vida e tempo de sobrevivência e na Seção 4 uma discussão a respeito dos resultados
obtidos e seu seguimento é apresentada.

2 Especificação do modelo

Para a especificação do modelo conjunto, consideremos algumas notações. Sejam T ∗i o
verdadeiro tempo de ocorrência do evento para um indiv́ıduo i da amostra e Ti o tempo de
ocorrência observado. Ao longo do processo de observação alguns indiv́ıduos são censurados.
Desta forma, denotando por Ci o tempo de censura associado ao i-ésimo elemento amostral,
define-se Ti como sendo min{T ∗i , Ci} e δi = I(T ∗i ≤ Ci) como um indicador do evento.

Defina yi(t) como o valor observado no instante t, referente ao i-ésimo indiv́ıduo. A coleta
destas informações resulta em um conjunto de medidas Yi(t) = {yi(tij), 0 ≤ tij ≤ Ti, j =
1, · · · , ni}. Associada a cada indiv́ıduo da amostra está a trajetória das variáveis longitudinais,
que é um processo especificado como Mi(t) = {mi(t), t ≥ 0}, em que mi(t) corresponde ao
verdadeiro valor da medição longitudinal no instante t ≥ 0. Note que Mi(t) é um processo
latente e portanto não observado. Desta forma para cada indiv́ıduo i da amostra, a história das
variáveis longitudinais Yi(t) é composta por elementos de Mi(t) contaminados por um erro de
medida.
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2.1 Submodelo de sobrevivência

Para medir o efeito da covariável longitudinal no tempo até a ocorrência do evento, é ne-
cessário estimar mi(t), reconstruindo o processo latente Mi(t) para cada indiv́ıduo. A carac-
terização da relação entre o processo longitudinal Mi(t) e o tempo até a ocorrência do evento
é feita através de um modelo de riscos relativos com variáveis dependentes do tempo, sendo
especificado da seguinte maneira,

hi(t) = lim
dt→0

P (t ≤ T ∗i < t+ dt|T ∗i ≥ t,Mi(t), wi)

dt

= h0(t) exp (γ>wi + αmi(t)), t ≥ 0. (1)

em que h0(t) denota a função de risco basal, wi é o vetor de covariáveis do i-ésimo indiv́ıduo,
relacionadas ao processo de sobrevivência, γ é o vetor de coeficientes de regressão associados
à wi e α é um parâmetro desconhecido que quantifica o impacto do processo longitudinal na
observação do evento.

Neste trabalho, adotamos uma modelagem semiparamétrica para o risco (1). Para tanto
consideramos que o risco basal h0(t) é uma função constante por parte, ou seja, h0(t) é da
forma

h0(t) =

K∑
k=1

ξkI(tk−1 < ξk ≤ tk). (2)

2.2 Submodelo de longitudinal

A distribuição beta é muito flex́ıvel para modelagem de proporções, taxas e outras vaŕıveis
que estejam definidas em intervalos do tipo (0,1). Sua densidade, que pode ter formas bastante
diferentes de acordo com a combinação dos valores dos parâmetros que indexam a distribuição,
é dada por

p(y; p, q) =
Γ(p+ q)

Γ(p)Γ(q)
yp−1(1− y)q−1, 0 < y < 1, (3)

em que p, q > 0 e Γ(·) denota a função gama. Além disso, o valor esperado e a variância de y
são dados respectivamente por

E(Y ) =
p

p+ q
, e V (Y ) =

pq

(p+ q)2 + (p+ q + 1)
. (4)

Com o objetivo de definir um modelo de regressão para variáveis aleatórias com distribuição
beta, Ferrari & Cribari-Neto (2004) reparametrizam a densidade (3) como segue. Seja µ =
E(Y ) e φ = p + q, temos que V (Y ) = V (µ)/(1 + φ), em que V (µ) = µ(1 − µ). Assim, os
novos parâmetros obtidos µ e φ são, respectivamente, a média da variável aleatória beta e um
parâmetro inversamente proporcional à variância de y, ou seja, um parâmetro de precisão. A
função densidade reparametrizada em função de µ e φ é dada por,

p(y;µ, φ) =
Γ(φ)

Γ(µφ)Γ((1− µ)φ)
yµφ−1(1− y)(1−µ)φ−1, 0 < y < 1, (5)

com 0 < µ < 1 e φ > 0.
Sejam y1, . . . ,yn variáveis aleatórias independentes, em que yi = (yi1, . . . , yini)

> é o vetor
com as ni medidas repetidas do i-ésimo indiv́ıduo. Suponha que, condicional ao vetor de efeitos
aleatórios bi = (bi0, bi1)

>, as variáveis yij são independentes para j = 1, . . . , ni, e têm função de
densidade dada por (5), com média µij e parâmeto de precisão φ. Assuma ainda que o vetor
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de efeitos aleatórios segue distribuição normal, com média zero e covariância D. Desta forma,
temos a seguinte especificação

yij |bi0, bi1 ∼ Be(µij , φ)

bi ∼ N(0, D). (6)

Algumas suposições podem ser feitas a respeito da estrutura da matriz D, a depender da
forma como se associam os elementos do vetor de efeitos aleatórios. Assumiremos que D é da
forma σ2I, em que σ2 > 0 e I denota a matriz identidade. O modelo de regressão é definido
através da seguinte relação,

g(µij) = ηij = x>ijβ + z>ijbi (7)

em que xij é o vetor de variáveis explicativas associadas aos efeitos fixos, β é o vetor de
coeficientes de regressão e zij é o vetor de variáveis explicativas associadas aos efeitos aleatórios.
A função g(·) : (0, 1) → R é a função de ligação, a qual assumimos ser estritamente monótona
e duas vezes diferenciável. Algumas funções podem ser atribúıdas à g(·), como por exemplo as
especificações logito, probito, complemento log-log e log-log, cuja forma funcional se encontra
na Tabela 1.

Tabela 1: Funções de ligações e suas formas funcionais.

Ligação Forma Funcional g(µ) µ
Logito log(µ/(1− µ)) exp(η)/(1 + exp(η)
Probito Φ−1(µ) Φ(η)
C. log-log log(− log(1− µ)) 1− exp(− exp(η))
Log-log − log(− log(µ)) exp(− exp(−η))

2.3 Função de verossimilhança

Para definir a função de verossimilhança conjunta do modelo algumas suposições devem ser
consideradas. Assume-se que o vetor de efeitos aleatórios bi é subjacente aos processos longitu-
dinal e de sobrevivência, e que, condicional a bi estes processos são independentes. Assim, sob
estas hipóteses, denotando o vetor de parâmetros por θ = (θt, θy,b)

>, temos que a distribuição
marginal de yi é dada por

p(Ti, δi,yi|bi,θ) = p(Ti, δi|bi, θt)p(yi|bi,θy,b) (8)

E portanto, temos que a distribuição marginal de (Ti, δi,yi) é da forma

p(Ti, δi,yi|θ) =

∫
p(Ti, δi|bi, θt)

ni∏
j=1

p(yi|β, φ)p(bi|D)dbi. (9)

A função log-verossimilhança de θ é da forma
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l(θ) =

n∑
i=1

log p(Ti, δi,yi|θ)

=
n∑
i=1

log

∫
p(Ti, δi|bi, θt)

ni∏
j=1

p(yi|β, φ)p(bi|D)dbi

=

n∑
i=1

log

∫
[h0(t) exp (γ>wi + αmi(t))]

δi exp

(∫ Ti

0
−h0(s) exp (γ>wi + αmi(s))ds

)

×
ni∏
j=1

Γ(φ)

Γ(µijφ)Γ((1− µij)φ)
yµijφ−1(1− y)(1−µij)φ−1

× 2π−qb/2 det(D)−1/2 exp

(
bi>D−1bi

2

)
dbi (10)

em que qb é a dimensão do vetor de efeitos aleatório b e µij é obtido pela relação (7). A
avaliação da contribuição de cada indiv́ıduo i da amostra na função de verossimilhança depende
da resolução das seguintes integrais com respeito aos efeitos aleatórios:

Ii =

∫
[h0(t) exp (γ>wi + αmi(t))]

δi exp

(∫ Ti

0
−h0(s) exp (γ>wi + αmi(s))ds

)
×

ni∏
j=1

Γ(φ)

Γ(µijφ)Γ((1− µij)φ)
yµijφ−1(1− y)(1−µij)φ−1

× 2π−qb/2 det(D)−1/2 exp

(
bi>D−1bi

2

)
dbi (11)

Por causa de dificuldades enfrentadas no desenvolvimento da integração, ou pela não existência
de solução anaĺıtica, é necessária a implementação de técnicas de análise numérica nestes casos.

3 Aplicação: Dados ICESP

Com o objetivo de avaliar o tempo de sobrevivência e a qualidade de vida de pacientes com
neoplasia maligna que deram entrada em unidade de terapia intensiva, um estudo de coorte
prospectivo, apresentado em Normilio-Silva et al. (2016), foi realizado em dois hospitais públicos
brasileiros cuja especialidade é o tratamento do câncer: o Instituto do Câncer Dr. Octávio Frias
de Oliveira (ICESP) e a Fundação Pio XII (Hospital do Câncer de Barretos), ambos situados
estado de São Paulo. Um total de 803 indiv́ıduos maiores de 18 anos de idade, com malignidades
comprovada e admitidos em UTIs dos hospitais participantes, foram inclúıdos no estudo. As
variáveis resposta coletadas foram o ı́ndice de utilidade da qualidade de vida, e o tempo de
sobrevivência dos pacientes.

A primeira variável foi obtida através da aplicação do questionário EQ-5D-3L, cujo resultado
foi convertido em um ı́ndice de utilidade, que assume valores no intervalo (0,1). A medição da
qualidade de vida foi feita antes da entrada na UTI, e acompanhada ao longo dos seguintes
dias após a internação: 15, 90, 180, 365 e 540. O tempo de sobrevivência foi definido como o
tempo até a ocorrência do óbito, tendo sua origem a partir da data da internação na UTI. O
tempo máximo de estudo é 720 dias. Com relação às covariáveis, foram coletadas informações
sócio-demográficas dos pacientes , informações de aspecto cĺınico ,a coexistência de doenças ,e
uma covariável que especifica o centro de coleta dos dados (ICESP ou Hospital do Câncer de
Barretos).

Na Figura 1 apresentamos os perfis do ı́ndice de utilidade da qualidade de vida considerando
a amostra completa, juntamente com o seu perfil médio. Notam-se padrões de comportamento
variados de acordo com cada paciente, e uma tendência média de crescimento ao longo do tempo.
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Figura 1: Perfis do ı́ndice de utilidade da qualidade de vida e perfil médio, considerando a amostra
completa.

Esta trajetória da qualidade de vida nos dias subsequentes à alta da UTI é esperada, uma
vez que pacientes debilitados são submetidos a cuidados intensivos para a melhora de sua saúde.
Além disso, as ocorrências de óbitos ao longo do tempo faz com que permaneçam na amostra
indiv́ıduos que apresentam uma melhor reação aos tratamentos, e que portanto tendem a ter uma
sobrevida e um ı́ndice de utilidade maior. Na Figura 2 apresentamos a curva de sobrevivência
obtida via estimador de Kaplan-Meier.
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Figura 2: Curva de sobrevivência obtida através do estimador de Kaplan-Meier, considerando a
amostra completa.

Para captar a relação entre as duas respostas de interesse, utilzamos a análise conjunta,
através da seguinte formulação. Denotemos por yi = (yi1, · · · , yini)

> as ni medidas do ı́ndice
de utilidade da qualidade de vida, associadas ao i-ésimo indiv́ıduo da amostra. Sejam Ti o
tempo de ocorrência de óbito e δi o indicador de censura, para o i-ésimo paciente observado.
Consideramos como submodelo longitudinal a especificação dada em (6), em que a estrutura de
regressão (7) é definida por

g(µ) = β0 + β1t+ b0, (12)

e a função de ligação utilizada é a logito. O submodelo de sobrevivência é especificado de acordo
com a formulação (1) da maneira que segue,

hi(t) = h0(t) exp (αmi(t)), t ≥ 0, (13)

com função de risco basal constante por partes. A avaliação do logaritmo da função veros-
similhança depende da resolução da integral (11), cuja solução numérica é feita utilizando a
quadratura de Gauss-Hermite. O ajuste do modelo foi feito através de métodos de maxização
da verossimilhança. As estimativas dos parâmetros foram obtidas utilizando a função optim,
dispońıvel no pacote stats do R, e estão dispostas na Tabela 2. O modelo conjunto encontra
uma forte associação entre o ı́ndice de utilidade de qualidade de vida e o risco de morte: uma
diminuição de 0.1 no ı́ndice de utilidade de qualidade de vida corresponde a um aumento de
exp (α) = 1, 28 vezes no risco de morte.
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Tabela 2: Estimativas dos parâmetros do modelo conjunto, utilizando os dados do ICESP.

Parâmetros Estimativas
β0 0.4407
β1 0.0002

log φ -1.1711
logD -1.2599
α -2.4795

log ξ1 -2.9603
log ξ2 -3.3639
log ξ3 -4.5189
log ξ4 -5.0206
log ξ5 -5.5994
log ξ6 -5.2213

4 Discussão

Atualmente, na área da saúde, há uma necessidade cada vez maior de se estabelecer não
apenas as estimativas de prognóstico ou sobrevida, mas principalmente a relação entre tais
quantidades. O uso da modelagem conjunta neste caso permite captar o grau de associação das
respostas de interesse, considerando a inclusão de caracteŕısticas intŕınsecas de cada indiv́ıduo.
Este aspecto do modelo contribui de maneira notável da tomada de decisões médicas, auxiliando
na indicação individualizada de tratamentos.

A especificação mais usual para explicar o processo longitudinal tem sido feita através de
modelos lineares com efeitos mistos, considerando medidas longitudinais com distribuição nor-
mal. Neste trabalho propomos o uso de modelos de regressão beta com efeitos mistos para
modelar variáveis longitudinais pertencentes ao intervalo (0,1).

O seu desenvolvimento até a realização deste Simpósio, terá seguimento no cálculo da matriz
de variância-covariância assintótica através do método Bootstrap, na inserção de um coeficiente
angular aleatório no modelo de regressão beta misto, e na comparação dos resultados obtidos
por meio de análises conjuntas, ou separadas, utilizadas neste tipo de dados.
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