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S

Binder (1992) proposed a method of fitting Cox’s proportional hazards models to survey
data with complex sampling designs. He defined the regression parameter of interest as
the solution to the partial likelihood score equation based on all the data values of the
survey population under study, and developed heuristically a procedure to estimate the
regression parameter and the corresponding variance. In this paper, we provide a formal
justification of Binder’s method. Furthermore, we present an alternative approach which
regards the survey population as a random sample from an infinite universe and accounts
for this randomness in the statistical inference. Under the alternative approach, the
regression parameter retains its original interpretation as the log hazard ratio, and the
statistical conclusion applies to other populations. The related problem of survival function
estimation is also studied.
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1. I

The Cox (1972) proportional hazards model has been widely used to study the effects
of covariates on a failure time. This model specifies that the hazard function of the failure
time T associated with a vector of possibly time-varying covariates X satisfies

h(t |X)=h0 (t)eb∞0X(t), (1·1)

where h0 ( . ) is an unspecified baseline hazard function, and b0 is a vector-valued unknown
regression parameter pertaining to the log hazard ratio or log relative risk.

Typically, the failure time is subject to right censoring. Let C be the censoring time.
Also, let TB =min (T , C), D=I(T∏C) and Y (t)=I(TB �t), where I(.) is the indicator func-
tion. If {TB

i
, D

i
, X

i
( . )} (i=1, . . . , N) is a random sample from the joint distribution of

{TB , D, X(.)}, then b0 can be estimated by the partial likelihood score function

U(b)) ∑
N

i=1
D
i qXi

(TB
i
)−

S(1) (b, TB
i
)

S(0) (b, TB
i
)r , (1·2)

where

S(0) (b, t)=N−1 ∑
N

i=1
Y
i
(t)eb∞X

i
(t), S(1)(b, t)=N−1 ∑

N

i=1
Y
i
( t)eb∞X

i
(t)X

i
( t).

Denote the solution to U(b)=0 by B. Under mild conditions, ND(B−b0 ) is asymptotically
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zero-mean normal with a covariance matrix that can be consistently estimated by I−1(B),
where I(b)=−N−1∂U(b)/∂b (Andersen & Gill, 1982).

In population-based surveys, the sample is drawn from a finite survey population via
a complex design, such as stratified multi-stage sampling. Binder (1992) described a pro-
cedure for fitting proportional hazards models to such data, which has been implemented
in major software packages, such as , and commonly used by data analysts. To
be specific, suppose that a sample of size n is drawn from a survey population of N units
through a complex design, the sampling weights being denoted by the w

i
’s. Binder (1992)

defined the finite-population parameter of interest as B, which is the root of (1·2) based
on the fixed values {TB

i
, D

i
, X

i
( . )} (i=1, . . . , N) of the survey population. He then proposed

to estimate B by the estimating function

UC (b)) ∑
n

i=1
w
i
D
i qXi

(TB
i
)−

SC (1) (b, TB
i
)

SC (0)(b, TB
i
)r , (1·3)

where

SC (0)(b, t)= ∑
n

i=1
w
i
Y
i
(t)eb∞X

i
(t), SC (1)(b, t)= ∑

n

i=1
w
i
Y
i
(t)eb∞X

i
(t)X

i
( t).

Denote the resulting estimator by BC . Binder (1992) derived heuristically a variance esti-
mator for BC by treating {TB

i
, D

i
, X

i
( .)} (i=1, . . . , N) as fixed. Note that the target parameter

B is an implicit function of the failure times, censoring times and covariate values of the
survey population, and does not have the hazard ratio interpretation.

In this paper, we develop an alternative inference procedure which treats {TB
i
, D

i
, X

i
( . )}

(i=1, . . . , N) of the survey population as a random sample from the joint distribution of
{TB , D, X(.)} rather than as fixed quantities. We refer to this as the superpopulation inference
as opposed to the finite-population inference of Binder (1992); see Särndal (1978), Binder
(1983) and Godambe & Thompson (1986) for general discussion of superpopulation versus
finite-population philosophies.

The term superpopulation has sometimes been used to imply that the sampling weights
are not used in the analysis (Binder, 1983). This is not the position taken here. The
proposed superpopulation inference takes into account the complex design of the survey
sample while regarding the survey population under study as having been drawn from an
infinite universe. The key difference between the proposed superpopulation inference and
Binder’s finite-population inference is that the former accounts for the random variation
from one survey population to another. This superpopulation approach allows one to
make analytical inference about the original regression parameter b0 of model (1·1), and
the statistical conclusions are generalisable to other similar populations. Although it is
not widely recognised by traditional survey samplers, the superpopulation approach taken
here is the prevailing school of thought in the current literature on population-based case-
control studies; see Scott & Wild (1997) and the references therein.

In the next section, we provide a theoretical justification for Binder’s work on finite-
population inference of the regression parameter. Furthermore, we study the estimation
of the cumulative hazard function and survival function, a problem not considered by
Binder. Building on the results of § 2, we develop in § 3 a superpopulation theory for
estimating b0 as well as the cumulative hazard function and survival function under model
(1·1) from survey data. In § 4, we report some simulation results. A few remarks are given
in § 5. Most of the technical detail is relegated to the Appendix.
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2. F- 

As mentioned in § 1, Binder (1992) defined the finite-population parameter of interest
as B, the root of the score function U(b) based on the survey population values
{TB
i
, D

i
, X

i
( .)} (i=1, . . . , N). He proposed to estimate B by BC , the root of UC (b). He derived

heuristically a variance estimator for BC conditional on the survey population values. He
also suggested that BC is consistent and asymptotically normal.

The key step in Binder’s derivation is the approximation of UC (B) by a weighted sum of
u
i
(B) (i=1, . . . , n) given in (3·6) and (3·7) of his paper. This approximation was derived

from the Taylor series expansion of the stochastic integral ∆{SC (1)(t, B)/SC (0)(t, B)} dGC (t)
around SC (0)=S(0), SC (1)=S(1) and GC=G, where

G
i
(t)=D

i
I(TB

i
∏t), G(t)=N−1 ∑

N

i=1
G
i
(t), GC (t)= ∑

n

i=1
w
i
G
i
(t).

Binder did not provide a formal justification for this expansion except to mention the
consistency of SC (0), SC (1) and GC and to cite the work of Lin & Wei (1989). As is evident
from the Appendix of this paper, the techniques required for ascertaining the asymptotic
properties of UC (B) are extremely delicate and differ substantially from those of Andersen
& Gill (1982) and Lin & Wei (1989) because the latter authors dealt with random sampling
from an infinite population, whereas UC involves correlated observations obtained from a
finite population with unequal probability sampling.

To facilitate theoretical development, we rewrite (1·2) and (1·3) as

U(b)= ∑
N

i=1
P2
0
qXi

(t)−
S(1)(b, t)

S(0)(b, t)r dG
i
(t),

UC (b)= ∑
N

i=1
P2
0

j
i

p
i
qXi

(t)−
SC (1) (b, t)

SC (0) (b, t)r dG
i
(t),

where j
i
indicates, by the values 1 versus 0, whether or not the ith unit of the survey

population is selected into the sample, and p
i
is the inclusion probability for the ith unit.

It is assumed that p
i
>0 for all i. We also rewrite

GC (t)=N−1 ∑
N

i=1

j
i

p
i
G
i
(t), SC (0)(b, t)=N−1 ∑

N

i=1

j
i

p
i
Y
i
(t)eb∞X

i
(t),

SC (1) (b, t)=N−1 ∑
N

i=1

j
i

p
i
Y
i
(t)eb∞X

i
(t)X

i
(t).

Note that the only randomness in UC (b) is generated by the j
i
’s since the inference is

conditional on {TB
i
, D

i
, X

i
( .)} (i=1, . . . , N). We are concerned with the asymptotic behav-

iour of UC , BC etc. when both n and N tend to infinity. In the sequel, the summation is
taken from 1 to N and the limit is taken as N
2 if not explicitly indicated.

Define

s(0)(b, t)= lim
N�2

S(0) (b, t), s(1) (b, t)= lim
N�2

S(1) (b, t);

a= lim
N�2

N−1 ∑
N

i=1
P2
0

X
i
(t) dG

i
( t), g(t)= lim

N�2
G(t).
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Clearly, N−1U(b) converges to

u(b))a− P2
0

s(1)(b, t)

s(0) (b, t)
dg(t), (2·1)

which is also the probability limit of N−1UC (b) since p
i
=pr(j

i
=1). Thus, it follows from

the arguments given in the proof of Lemma 3.1 of Andersen & Gill (1982) that BC is a
consistent estimator of B. More precisely, BC and B converge to the same limit.

We show in the Appendix that

N−DUC (B)=N−D ∑
N

i=1

j
i
−p

i
p
i

U
i
(B)+o

p
(1), (2·2)

where

U
i
(b)= P2

0
qXi

(t)−
s(1) (b, t)

s(0)(b, t)r qdG
i
(t)−

Y
i
(t)eb∞X

i
(t) dg(t)

s(0) (b, t) r . (2·3)

Expression (2·3) is essentially the same as (3·7) of Binder (1992). Therefore, Binder’s
approximation for UC (B) is valid. As argued in the Appendix, approximation (2·2) entails
that N−DUC (B) is asymptotically zero-mean normal with covariance matrix

V (B)) lim
N�2

N−1 ∑
N

i=1
∑
N

j=1

p
ij
−p

i
p
j

p
i
p
j

U
i
(B)U∞

j
(B), (2·4)

where p
ij
=pr(j

i
j
j
=1). It then follows from the Taylor series expansion that ND(BC−B)

is asymptotically zero-mean normal with covariance matrix D−1 (B)V (B)D−1 (B), where
D(B)=limI (B). We can estimate D(B) and V (B) consistently by

DC (BC ))−N−1∂UC (b)/∂b |
b=BC

,

VC (BC ))N−1 ∑
N

i=1
∑
N

j=1
j
i
j
j

p
ij
−p

i
p
j

p
ij

p
i
p
j

UC
i
(BC )UC ∞

j
(BC ), (2·5)

where

UC
i
(b)=D

i qXi
(TB
i
)−

SC (1)(b, TB
i
)

SC (0) (b, TB
i
)r−N−1 ∑

N

j=1

j
j
D
j
Y
i
(TB
j
)eb∞X

i
(TB
j
)

p
j
SC (0)(b, TB

j
) qXi

(TB
j
)−

SC (1)(b, TB
j
)

SC (0)(b, TB
j
)r .

In practice, it is seldom necessary to evaluate (2·5) directly. Instead, one can express the
variance estimator in a computationally simpler form for each specific survey design.

It is often of interest to estimate/predict the survival experience given specific covariate
values. Let H0 (t) and F0(t) denote the baseline cumulative hazard function and baseline
survival function under model (1·1), i.e.

H0(t)= P t
0

h0(u) du, F0 (t)=e−H
0
(t),

which become the cumulative hazard and survival functions under X=x0 when the X
i
’s

are centred at x0 . Based on a random sample of size N, the Breslow (1972) estimator of
H0(t) is

HB 0( t; B)) P t
0

dG(u)

S(0) (B, u)
,
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and the corresponding estimator of F0(t) is FB0 (t))e−HB
0
(t;B). By analogy with B, we take

HB 0 and FB0 with fixed {TB
i
, D

i
, X

i
( .)} (i=1, . . . , N) as the parameters of interest.

Given the survey data, we can estimate HB 0( t; B) consistently by

HC 0 (t; BC )) P t
0

dGC (u)

SC (0)(BC , u)
(2·6)

because of the consistency of GC , S(0) and BC . It is shown in the Appendix that
ND{HC 0 (t; BC )−HB 0 (t; B)} converges weakly to a zero-mean Gaussian process with covari-
ance function

s(t1 , t2 ; B)) lim
N�2

N−1 ∑
N

i=1
∑
N

j=1

p
ij
−p

i
p
j

p
i
p
j

h
i
(t1 ; B)h

j
(t2 ; B) (2·7)

at (t1 , t2), where h
i
(t; b)=v

i
(t; b)+r∞(t; b)D−1 (b)U

i
(b),

v
i
(t; b)= P t

0

dG
i
(u)−Y

i
(u)eb∞X

i
(u) dHB 0 (u; b)

s(0)(b, u)
, r(t; b)=− P t

0

s(1)(b, u) dg(u)

s(0) (b, u)2
.

A consistent estimator for s( t1 , t2 ; B) is

s@ (t1 , t2))N−1 ∑
N

i=1
∑
N

j=1
j
i
j
j

p
ij
−p

i
p
j

p
ij

p
i
p
j

h@
i
( t1 ; BC )h@

j
(t2 ; BC ),

where h@
i
(t; b)=v@

i
(t; b)+R∞(t; b)DC−1 (b)UC

i
(b),

v@
i
(t; b)=

D
i
I(TB

i
∏t)

SC (0)(b, TB
i
)
−N−1 ∑

N

j=1

j
j
D
j
I(TB

j
∏t)Y

i
(TB
j
)eb∞X

i
(TB
j
)

p
j
SC (0)(b, TB

j
)2

,

R(t; b)=−N−1 ∑
N

i=1

j
i
D
i
I(TB

i
∏t)SC (1) (b, TB

i
)

p
i
SC (0) (b, TB

i
)2

.

Given HC 0 , we can estimate FB0(t) by FC0 (t))e−HC
0
(t;BC). It follows from the functional d-

method that ND{FC0 (t)−FB0 (t)} converges weakly to a zero-mean Gaussian process with
estimated covariance function FC0 (t1 )FC0( t2)s@ (t1 , t2 ).

3. S 

In § 2, the targets of inference are restricted to the summary statistics of the survey
population data, B, HB 0 and FB0 , which do not have any probabilistic interpretation. In this
section, we regard the survey population as a random sample from an infinite superpopu-
lation and make analytic inference about b0 , H0 and F0 of model (1·1) by taking into
account the sampling of the survey population from the superpopulation as well as that
of the survey sample from the survey population. Under this superpopulation approach,
the parameters of interest have simple probabilistic interpretation, and the inference per-
tains to the probability distribution of the failure time in the superpopulation.

For the superpopulation inference, {TB
i
, D

i
, X

i
( .)} (i=1, . . . , N) of the survey population

are not treated as fixed quantities, but rather as a random sample from the joint distri-
bution of {TB , D, X(.)}. Let F be the sigma-field generated by {TB

i
, D

i
,X

i
( . )} (i=1, . . . , N).

The inclusion probabilities are allowed to depend on F and are expressed as

p
i
=pr (j

i
=1 |F) (i=1, . . . , N). (3·1)
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Since U(b) is the partial likelihood score function for b0 calculated from a random
sample of size N and, as argued in § 2, N−1UC (b) converges to the same limit as N−1U(b),
it follows from the consistency of the maximum partial likelihood estimator that BC , the
solution to UC (b)=0, is consistent for the hazard ratio parameter b0 . Likewise, HC 0 (t; BC )
is a consistent estimator of the baseline cumulative hazard function H0 (t) because of the
consistency of the Breslow estimator HB 0(t; B) and the convergence of HC 0(t ;BC ) and HB 0 (t; B)
to the same limit. Thus, the estimators of the finite-population parameters discussed in
§ 2 are also consistent estimators of the model parameters for the superpopulation infer-
ence. The variances of the estimators will be different because the superpopulation infer-
ence takes into account the variation from one survey population to another.

To obtain the asymptotic distribution of BC for the superpopulation inference, we need
to derive the corresponding distribution of UC (b0). Clearly,

N−DUC (b0)=N−DU(b0)+N−D{UC (b0 )−U(b0)}. (3·2)

Under mild conditions, N−DU(b0 ) is asymptotically zero-mean normal with covariance
matrix D(b0) (Andersen & Gill, 1982). The second term on the right-hand side of (3·2)
can be written as

N−D ∑
N

i=1
P2
0

j
i
−p

i
p
i

X
i
(t) dG

i
(t)−ND P2

0
qSC (1)(b0 , t)SC (0) (b0 , t)

dGC (t)−
S(1) (b0 , t)
S(0)(b0 , t)

dG(t)r ,
which is in the same form as the right-hand side of (A·1) in the Appendix. It then follows
from the arguments of the Appendix that, conditional on F,

N−D{UC (b0 )−U(b0)}=N−D ∑
N

i=1

j
i
−p

i
p
i

U
i
(b0 )+o

p
(1), (3·3)

which converges weakly to a zero-mean normal random vector with covariance matrix
V (b0). Since as a limit V (b0) is a deterministic matrix which does not depend on F, the
weak convergence also holds unconditionally. In view of (3·1) and (3·3), we can use the
law of conditional expectation to show that the two terms on the right-hand side
of (3·2) are asymptotically independent. Hence, N−DUC (b0) is asymptotically zero-
mean normal with covariance matrix D(b0)+V (b0). The Taylor series expansion then
implies that ND (BC−b0) is asymptotically zero-mean normal with covariance matrix

V)D−1 (b0 )+D−1 (b0 )V (b0)D−1 (b0 ),

which can be estimated consistently by VC)DC−1(BC )+DC−1(BC )VC (BC )DC−1 (BC ). The covariance
matrix comprises two components: D−1 (b0) is the variation due to the sampling of the
survey population from the superpopulation and D−1 (b0)V (b0 )D−1 (b0) is the variation
due to the sampling of the survey sample from the survey population.

To establish the weak convergence of HC 0 (t; BC ), we make the decomposition

ND{HC 0 (t; BC )−H0 (t)}=ND{HB 0 (t; B)−H0 (t)}+ND{HC 0 (t; BC )−HB 0 (t; B)}.

The two terms on the right-hand side are asymptotically independent. It follows from
the existing theory for the Breslow estimator (Andersen & Gill, 1982) that
ND{HB 0 (t; B)−H0 (t)} converges weakly to a zero-mean Gaussian process with covariance
function

w(t1 , t2 )) P min(t1,t2)
0

dH0 (u)

s(0) (b0 , u)
+r∞(t1 ; b0)D−1 (b0 )r(t2 ; b0).
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By the arguments of the Appendix, ND{HC 0 (t; BC )−HB 0( t; B)} converges weakly to
a zero-mean Gaussian process with covariance function s(t1 , t2 ; b0). Hence,
ND{HC 0 (t; BC )−H0 (t)} converges weakly to a zero-mean Gaussian process with covariance
function w(t1 , t2)+s(t1 , t2 ; b0), which can be estimated consistently by w@ (t1 , t2)+s@ (t1 , t2),
where

w@ (t1 , t2)=N−1 ∑
N

i=1

j
i
D
i
I{TB

i
∏min (t1 , t2)}

p
i
SC (0) (BC , TB

i
)2

+R∞( t1 ; BC )DC−1 (BC )R(t2 ; BC ).

Consequently, ND{FC0 (t)−F0( t)} converges weakly to a zero-mean Gaussian process with
estimated covariance function FC0(t1)FC0 (t2 ){w@ (t1 , t2)+s@ (t1 , t2 )}. These results enable
one to predict survival experience for people inside and outside the survey population.

The variances for BC , HC 0 and FC0 are always larger under the superpopulation inference
than under the finite-population inference. The extra variance for NDBC is D−1 (b0 ) and
that for NDHC 0 (t; BC ) is w( t, t). The extra variances, which can be estimated from standard
software, are numerically negligible if the p

i
’s are small because the relative order of

D−1 (b0) and w(t1 , t2 ) to D−1 (b0 )V (b0)D−1 (b0 ) and s( t1 , t2 ; b0) is n/N. Thus, the price to
pay for making the superpopulation inference is minimal if the inclusion probabilities are
low. However, the variance estimators given in § 2 will be too small for making the
superpopulation inference if the inclusion probabilities are high.

4. N 

We conducted a series of simulation experiments to evaluate the performance of the
proposed superpopulation method. Failure times were generated from model (1·1) in which
X1 is a Bernoulli variable with 0·5 success probability and X2 is a unit-variance normal
variable with mean 0 if X1=1 and mean −0·5 if X1=0; we set l0=1, b01=b02=0·5.
Failure times were subject to independent censoring by a Un[0, 1] variable, creating
approximately 40% observed failures and 60% non-failures. We considered N=1000 and
10 000 together with n=200, 500 and 1000, and applied stratified simple random sampling.
The population was stratified by failures versus non-failures and by X2+Z∏0 versus
X2+Z>0, where Z is an independent standard normal variable. Equal numbers of units
were drawn from each of the four strata in the survey population. For each combination
of N and n, we generated 10 000 simulation samples.

Table 1. Summary statistics for the simulation studies

Superpopulation Finite-population
N n n/N Mean(BC 1 )  (BC 1 )  Cov. pr.  Cov. pr.

1000 200 20% 0·506 0·229 0·228 0·947 0·202 0·913
1000 500 50% 0·502 0·144 0·144 0·953 0·100 0·822

10 000 200 2% 0·509 0·231 0·227 0·945 0·224 0·942
10 000 500 5% 0·503 0·145 0·144 0·948 0·140 0·941
10 000 1000 10% 0·503 0·102 0·102 0·948 0·096 0·932

, mean of standard error estimates. Cov. pr., coverage probability of 95% confidence

interval.

Table 1 displays the Monte Carlo estimates for the sampling mean and sampling stan-
dard error of BC 1 as well as for the means of the standard error estimates and the empir-
ical coverage probabilities of the 95% confidence intervals for b01 based on the super-
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population and finite-population variance estimators. Apparently, BC 1 has little, if any, bias.
The superpopulation variance estimator reflects very well the true variance, and the corre-
sponding confidence intervals have accurate coverage probabilities. When the inclusion
probabilities are low, less than 5%, say, the finite-population variance estimator is close
to the superpopulation variance estimator, and the corresponding confidence intervals
have reasonable coverage probabilities. If the inclusion probabilities are high, however,
the use of the finite-population variance estimator would result in severe underestimation
of the superpopulation variance and poor coverage probabilities of the confidence intervals
for the log hazard ratio.

The results for estimating b02 are similar to those for b01 and are thus omitted from
the table. Additional studies revealed that the standard partial likelihood method which
ignores the complex design of the survey could yield seriously misleading results; the
sampling means of the maximum partial likelihood estimators of b01 and b02 were found
to be about 0·47 and 0·36, respectively.

5. R

There is a long-standing debate in survey sampling on whether survey data should be
analysed within the finite-population or superpopulation framework. The former approach
is a valuable descriptive tool, but not well suited for regression analysis. When the survey
population is fixed, there is no probability model governing the relationship between the
response variable and covariates. Consequently, the interpretation of the regression param-
eter is awkward and the prediction of the response based on covariate values is difficult.

Numerically, the superpopulation approach advocated here may not be a dramatic
departure from the traditional finite-population approach. In fact, the same parameter
estimators are used, and the variance estimators are similar when the inclusion probabilit-
ies are low. However, by treating the survey population as a random sample from the
superpopulation and by adjusting for this extra randomness in the variance estimation,
one can make inference about parameters which have clear probabilistic interpretations,
and the statistical conclusion extends beyond the survey population under study.
Conceptually, this is a more natural and appealing approach to regression analysis.

A major motivation for Binder’s finite-population inference is that it is estimating a
well-defined quantity even when model (1·1) fails. This is also true for the superpopulation
inference after a variance adjustment. Under misspecified models, B converges to a well-
defined limit b*, which is the root of u(b) given in (2·1) (Lin & Wei, 1989). Thus, BC
converges to b*, which is also the limit of BC and B in the finite-population inference.
Under the superpopulation approach, b* can be interpreted as the value of b minimising
a generalised Kullback–Leibler distance between the assumed and true conditional hazard
functions (Hjort, 1992). By the arguments of the Appendix and Lin & Wei (1989),
ND(BC−b*) is asymptotically zero-mean normal with a covariance matrix consistently
estimated by

DC−1(BC ){QC (BC )+VC (BC )}DC−1(BC ),

where QC (b)=N−1W (j
i
/p
i
)UC

i
(b)UC ∞

i
(b). Furthermore, HC 0( t; BC ) converges to

H*
0
(t))P t

0
{s(0)(b*, u)}−1 dg(u),

and ND{HC 0(t; BC )−H*
0
(t)} and ND{FC0(t)−e−H*

0
(t)} are asymmetrically zero-mean Gaussian
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with approximate covariance functions

{w@*(t1 , t2 )+s@ (t1 , t2)}, FC0 (t1 )FC0(t2){w@*(t1 , t2)+s@ ( t1 , t2)},

respectively, where w@*(t1 , t2 )=N−1W (j
i
/p
i
)h@
i
(t1 ; BC )h@

i
(t2 ; BC ).
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A

Finite-population sampling distributions of UC (B) and HC 0 (t; BC )
In order for UC (B), HC 0 (t; BC ) or any other statistics calculated from the survey data to be asymptoti-

cally normal, the survey design needs to permit the application of the central limit theorem to the
normalised Horvitz–Thompson estimator; that is, for possibly vector-valued variates (Z1 , . . . , ZN

),

N−D ∑
N

i=1

j
i
−p

i
p
i

Z
i

is asymptotically zero-mean normal. The conditions required for the central limit theorem to hold
are given by Hájek (1960, 1964) and Rosén (1972). By the central limit theorem, the finite-dimen-
sional distributions of the processes

ND{GC (t)−G(t)}, ND{SC (0) (b, t)−S(0) (b, t)}, ND{SC (1) (b, t)−S(1) (b, t)}

are asymptotically multivariate zero-mean normal since these three processes are normalised
Horvitz–Thompson estimators at every t. We refer to such processes as normalised Horvitz–
Thompson processes and assume that they are tight under the survey design of interest. The
tightness, together with the finite-dimensional normality, implies that normalised Horvitz–
Thompson processes converge weakly to zero-mean Gaussian processes. To our knowledge, there
does not exist a general theory on the conditions required for the tightness and weak convergence
of Horvitz–Thompson processes. However, the results of van der Vaart & Wellner (1996, §§ 2.9,
3.6, 3.7) can be applied to possibly stratified simple random sampling and can potentially be
extended to other survey designs.

In addition to the above results, we will also appeal to the following lemma in our derivation
of the asymptotic distributions for UC (B) and HC 0 (t; BC ).

L 1. L et W (t) and Z(t) be two sequences of bounded processes. Suppose that W (t) is monotone
and converges to w(t) uniformly in t in probability and that Z(t) converges weakly to a zero-mean
process with continuous sample paths. T hen

P t
0

{W (u)−w(u)} dZ(u)
0, P t
0

Z(u) d{W (u)−w(u)}
0

uniformly in t in probability.

This lemma follows from the strong embedding theorem (Shorack & Wellner, 1986, p. 47) and
Helly’s Theorem (Serfling, 1980, p. 352); see the Appendix of Lin, Wei & Ying (1998) for the proof
of a similar result.

We are now in position to study the asymptotic properties for UC (B). By definition, U(B)=0.
Thus, UC (B)=UC (B)−U(B), that is

N−DUC (B)=N−D ∑
N

i=1
P2
0

j
i
−p

i
p
i

X
i
(t) dG

i
(t)−ND P2

0
qSC (1) (B, t)

SC (0) (B, t)
dGC (t)−

S(1) (B, t)

S(0) (B, t)
dG(t)r .

(A·1)
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The second term on the right-hand side of (A·1) equals

ND P 2
0

SC (1) (B, t)

SC (0) (B, t)
d{GC (t)−G(t)}+ND P2

0
qSC (1) (B, t)

SC (0) (B, t)
−

S(1) (B, t)

S(0) (B, t)r dG(t). (A·2)

As stated above, ND{GC (t)−G(t)} converges weakly to a zero-mean Gaussian process. The limiting
process can be shown to have continuous sample paths via the Kolmogorov–Centsov Theorem
(Karatzas & Shreve, 1988, p. 53). Clearly, SC (0) (B, t) is a monotone function in t. In addition, SC (1) (B, t)
is a sum of two monotone functions since X

i
(t)=max{X

i
(t), 0}−max{−X

i
(t), 0}. It then follows

from Lemma 1 that

ND P 2
0

SC (1) (B, t)

SC (0) (B, t)
d{GC (t)−G(t)}=ND P2

0

s(1) (B, t)

s(0) (B, t)
d{GC ( t)−G(t)}+o

p
(1). (A·3)

The second term of (A·2) equals

P2
0
CND{SC (1) (B, t)−S(1) (B, t)}

SC (0) (B, t)
−

ND{SC (0) (B, t)−S(0) (B, t)}S(1) (B, t)

SC (0) (B, t)S(0) (B, t) D dG(t),

which can be shown to be

P 2
0
CND{SC (1) (B, t)−S(1) (B, t)}

s(0) (B, t)
−

ND{SC (0) (B, t)−S(0) (B, t)}s(1) (B, t)

s(0) (B, t)2 D dg(t)+o
p
(1) (A·4)

by Lemma 1, together with the uniform consistency of SC (0), SC (1), S(0), S(1) and G and the weak
convergence of ND{SC (0) (B, t)−S(0) (B, t)} and ND{SC (1) (B, t)−S(1) (B, t)}. The combination of
(A·1)–(A·4) yields the linear approximation for N−DUC (B) given in (2·2) of § 2. Since the right-hand
side of (2·2) is a normalised Horvitz–Thompson estimator, the central limit theorem implies that
N−DUC (B) is asymptotically zero-mean normal with covariance matrix V (B) given in (2·4).

To establish the weak convergence of HC 0 ( t; BC ), we make the decomposition

HC 0 (t; BC )−HB 0 (t; B)={HC 0 (t; B)−HB 0 (t; B)}+{HC 0 (t; BC )−HC 0 (t; B)}.

Clearly,

ND{HC 0 (t; B)−HB 0 (t; B)}=ND P t
0

d{GC (u)−G(u)}

SC (0) (B, u)
−ND P t

0

{SC (0) (B, u)−S(0) (B, u)} dG(u)

SC (0) (B, u)S(0) (B, u)
.

It then follows from the arguments used to establish the asymptotic approximation for (A·2) that

ND{HC 0 (t; B)−HB 0( t; B)}=N−D ∑
N

i=1

j
i
−p

i
p
i

v
i
( t; B). (A·5)

By Taylor expansion, ND{HC 0 (t; BC )−HC 0 (t; B)}=R∞(t; B*)ND (BC−B), where B* is on the line segment
between BC and B. It is easy to show that R(t; B*) converges to r(t; B) uniformly in t. Thus,

ND{HC 0 (t; BC )−HC 0 (t; B)}=r∞(t; B)D−1 (B)N−D ∑
N

i=1

j
i
−p

i
p
i

U
i
(B)+o

p
(1). (A·6)

Combining (A·5) and (A·6), we have

ND{HC 0 (t; BC )−HB 0 (t; B)}=N−D ∑
N

i=1

j
i
−p

i
p
i

{v
i
(t; B)+r∞(t; B)D−1 (B)U

i
(B)}+o

p
(1),

which is a normalised Horvitz–Thompson process. Therefore, ND{HC 0 (t; BC )−HB 0 (t; B)} converges
weakly to a zero-mean Gaussian process with covariance function (2·7).
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