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Kumaraswamy [Generalized probability density-function for double-bounded random-processes,
J. Hydrol. 462 (1980), pp. 79–88] introduced a distribution for double-bounded random processes with
hydrological applications. For the first time, based on this distribution, we describe a new family of gener-
alized distributions (denoted with the prefix ‘Kw’) to extend the normal, Weibull, gamma, Gumbel, inverse
Gaussian distributions, among several well-known distributions. Some special distributions in the new
family such as the Kw-normal, Kw-Weibull, Kw-gamma, Kw-Gumbel and Kw-inverse Gaussian distribu-
tion are discussed. We express the ordinary moments of any Kw generalized distribution as linear functions
of probability weighted moments (PWMs) of the parent distribution. We also obtain the ordinary moments
of order statistics as functions of PWMs of the baseline distribution. We use the method of maximum
likelihood to fit the distributions in the new class and illustrate the potentiality of the new model with an
application to real data.

Keywords: gamma distribution; Kumaraswamy distribution; moments; normal distribution; order statis-
tics; Weibull distribution

AMS Subject Classification: 62E10; 62F03; 62F05; 62F10

1. Introduction

Beta distributions are very versatile and a variety of uncertainties can be usefully modelled by
them. Many of the finite range distributions encountered in practice can be easily transformed into
the standard beta distribution. In econometrics, many times the data are modelled by finite-range
distributions. Generalized beta distributions have been widely studied in statistics and numerous
authors have developed various classes of these distributions. Eugene et al. [1] proposed a general
class of distributions for a random variable defined from the logit of the beta random variable by
employing two parameters whose role is to introduce skewness and to vary tail weight. Following
the work of Eugene et al. [1], who defined the beta normal distribution, Nadarajah and Kotz [2]
introduced the beta Gumbel distribution, Nadarajah and Gupta [3] proposed the beta Fréchet
distribution and Nadarajah and Kotz [4] worked with the beta exponential distribution. However,
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884 G.M. Cordeiro and M. de Castro

all these works lead to some mathematical difficulties because the beta distribution is not fairly
tractable and, in particular, its cumulative distribution function (cdf) involves the incomplete beta
function ratio.

The paper by Kumaraswamy [5] proposed a new probability distribution for double-bounded
random processes with hydrological applications. The Kumaraswamy distribution appears to have
received considerable interest in hydrology and related areas, see [6–9].

In reliability and life testing experiments, many times the data are modelled by finite-range
distributions, see, for example, [10]. We start with the Kumaraswamy’s distribution (named from
now on as the Kw distribution) on the interval (0, 1), having the probability density function (pdf)
and the cdf with two shape parameters a > 0 and b > 0 defined by

f (x) = a b xa−1(1 − xa)b−1 and F(x) = 1 − (1 − xa)b. (1)

The density function in Equation (1) has many of the same properties as the beta distribution but
has some advantages in terms of tractability.

The Kw distribution does not seem to be very familiar to statisticians and has not been inves-
tigated systematically in much detail before, nor has its relative interchangeability with the beta
distribution has been widely appreciated. However, in a very recent paper, Jones [11] explored
the background and genesis of the Kw distribution and, more importantly, made clear some
similarities and differences between the beta and Kw distributions. For example, the Kw densities
are also unimodal, uniantimodal, increasing, decreasing or constant depending in the same way
as the beta distribution on the values of its parameters. He highlighted several advantages of
the Kw distribution over the beta distribution: the normalizing constant is very simple; simple
explicit formulae for the distribution and quantile functions which do not involve any special
functions; a simple formula for random variate generation; explicit formulae for L-moments
and simpler formulae for moments of order statistics. Further, according to Jones [11], the
beta distribution has the following advantages over the Kw distribution: simpler formulae for
moments and moment-generating function; a one-parameter sub-family of symmetric distribu-
tions; simpler moment estimation and more ways of generating the distribution via physical
processes.

Consider starting from a parent continuous distribution function G(x). A natural way of gen-
erating families of distributions on some other support from a simple starting parent distribution
with pdf g(x) = dG(x)/dx is to apply the quantile function to a family of distributions on the
interval (0, 1). We now combine the works of Eugene et al. [1] and Jones [11] (see also [12]) to
construct a new class of Kw generalized (Kw-G) distributions. From an arbitrary parent cdf G(x),
the cdf F(x) of the Kw-G distribution is defined by

F(x) = 1 − {1 − G(x)a}b, (2)

where a > 0 and b > 0 are two additional parameters whose role is to introduce skewness and to
vary tail weights. Because of its tractable distribution function (2), the Kw-G distribution can be
used quite effectively even if the data are censored.

Correspondingly, the density function of this family of distributions has a very simple form

f (x) = a b g(x) G(x)a−1{1 − G(x)a}b−1, (3)

whereas the density of the beta-G distribution is given by

f (x) = 1

B(a, b)
g(x)G(x)a−1{1 − G(x)}b−1, (4)
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where B(·, ·) denotes the beta function. The basic difference (except for a scale multiplier) between
Equations (3) and (4) is the power of G(x) inside the braces. Clearly, for b = 1 both densities are
identical.

The new density (3) has an advantage over the class of generalized beta distributions due
to Eugene et al. [1], since it does not involve any special function. For each continuous name
distribution (here name denotes the name of the parent distribution), we can associate the Kw-name
distribution with two extra parameters a and b from the cdf G(x) and pdf g(x) of the name
distribution whose density function is defined by formula (3).

Special Kw generalized distributions can be generated as follows: the Kw-normal (KwN)
distribution is obtained by taking G(x) in formula (3) to be the distribution function of the
normal distribution. Analogously, the Kw-Weibull (KwW), Kw-gamma (KwGa) and Kw-Gumbel
(KwGu) distributions are obtained by taking G(x) to be the cdf of the Weibull, gamma and
Gumbel distributions, respectively, among several others. Hence, each new Kw-G distribution
can be obtained from a specified G distribution. The Kw distribution is a special case of the Kw-G
distribution with G being the uniform distribution on [0, 1], whereas the G distribution is the
distribution corresponding to a = b = 1. With a = 1, the Kw-G distribution coincides with the
beta-G distribution generated by the beta(1, b) distribution. Furthermore, for b = 1 and a being
an integer, the Kw-G is the distribution of the maximum of a random sample of size a from G.
One major benefit of the Kw family of generalized distributions is its ability to fit skewed data
that cannot be properly fitted by existing distributions.

In this article, we deal with formula (3) in some generality. The mathematical properties of the
Kw generalized family are usually much simpler to derive than those of the class of generalized
beta distributions proposed by Eugene et al. [1]. Even if g(x) is a symmetric function around
0, then f (x) will not be a symmetric distribution even when a = b. From Equation (2), if u is
sampled from the uniform (0,1) distribution, then G−1({1 − u1/b}1/a) is drawn from the Kw-G
distribution.

The paper is outlined as follows. Section 2 provides some special distributions in the Kw
generalized family. In Section 3, we derive general expansions for the density of the Kw-G
distribution as a function of the parent density g(x) multiplied by power series in G(x) depending
if a is an integer or real non-integer. We can easily apply these expansions to several Kw-G
distributions. Probability weighted moments (PWMs) are expectations of certain functions of a
random variable and they can be defined for any random variable whose ordinary moments exist.
In Section 4, we derive two simple expansions for the moments of any Kw-G distribution as
linear functions of PWMs of the G distribution which are valid if a is an integer or real non-
integer. We derive in Section 5 some expansions for the density of order statistics of the class
of Kw-G distributions. In Section 6, PWMs are obtained for this class. Section 7 provides an
alternative formula for moments of order statistics of the Kw-G distribution. The L-moments
are also given in this section. Some inferential tools are discussed in Section 8. A real data set
is analysed by some distributions in the Kw-G family in Section 9. Section 10 ends with some
conclusions.

2. Special Kw generalized distributions

The Kw-G family of densities (3) allows for greater flexibility of its tails and can be widely
applied in many areas of engineering and biology. We will study in Section 3 some mathematical
properties of this new class of distributions because it extends several widely-known distributions
in the literature. The density (3) will be most tractable when the cdf G(x) and the pdf g(x) have
simple analytic expressions. We now discuss some special Kw generalized distributions.
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886 G.M. Cordeiro and M. de Castro

2.1. Kw-normal

The KN density is obtained from Equation (3) by taking G(·) and g(·) to be the cdf and pdf of the
normal N(μ, σ 2) distribution, so that

f (x) = ab

σ
φ

(
x − μ

σ

) {
�

(
x − μ

σ

)}a−1 {
1 − �

(
x − μ

σ

)a}b−1

,

where x ∈ R, μ ∈ R is a location parameter, σ > 0 is a scale parameter, a, b > 0 are shape
parameters, and φ(·) and �(·) are the pdf and cdf of the standard normal distribution, respectively.
A random variable with density f (x) above is denoted by X ∼ KwN (a, b, μ, σ 2). For μ = 0 and
σ = 1 we obtain the standard KwN distribution. Further, the KwN distribution with a = 2 and
b = 1 coincides with the skew normal distribution with the shape parameter equal to one [13].

2.2. Kw-Weibull

The cdf of the Weibull distribution with parameters β > 0 and c > 0 is G(x) = 1 − exp{−(βx)c}
for x > 0. Correspondingly, the density of the Kw-Weibull distribution, say KwW(a, b, c, β),
reduces to

f (x) = a b c βcxc−1 exp{−(βx)c}[1 − exp{−(βx)c}]a−1

× {1 − [1 − exp{−(βx)c}]a}b−1, x, a, b, c, β > 0.

If c = 1 we obtain the Kw-exponential distribution. The KwW(1, b, 1, β) distribution corre-
sponds to the exponential distribution with parameter β� = bβ.

2.3. Kw-gamma

Let Y be a gamma random variable with cdf G(y) = �βy(α)/�(α) for y, α, β > 0, where �(·) is
the gamma function and �z(α) = ∫ z

0 tα−1e−tdt is the incomplete gamma function. The density of
a random variable X following a KwGa distribution, say X ∼ KwGa(a, b, β, α), can be expressed
as

f (x) = a b βαxα−1e−βx

�(α)ab
�βx(α)a−1{�(α)a − �βx(α)a}b−1, x, β, α, a, b > 0.

For α = 1, we obtain the Kw-exponential distribution. Note that KwGa(1, b, β, 1) means the
exponential distribution with parameter β� = bβ.

2.4. Kw-Gumbel

The density and distribution functions of the Gumbel distribution with the location parameter
μ > 0 and scale parameter σ > 0 are given by

g(x) = 1

σ
exp

{
x − μ

σ
− exp

(
x − μ

σ

)}
, x > 0,

and

G(x) = 1 − exp

{
− exp

(
−x − μ

σ

)}
.

The mean and variance are equal to μ − γ σ and π2σ 2/6, respectively, where γ is the
Euler’s constant (γ ≈ 0.57722). Inserting these expressions into Equation (3) yields the KwGu
distribution, say KwGu(a, b, μ, σ ).
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2.5. Kw-inverse Gaussian

Adopting the parametrization in Stasinopoulos and Rigby [14], the pdf and cdf of the inverse
Gaussian distribution are

g(x) = 1√
2πσ 2x3

exp

{
− 1

2μ2σ 2x
(x − μ)2

}
, x, μ, σ > 0
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Figure 1. (Available in colour online). (a) Kw-normal (a, b, 0, 1), (b) Kw-gamma (a, b, 1, α), (c) Kw-Gumbel (a, b, 0, 1)

and (d) Kw-inverse Gaussian (a, b, μ, σ 2) density functions (the dashed lines represent the parent distributions).
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and

G(x) = �

(
1√
σ 2x

(
x

μ
− 1

))
+ exp

(
2

μσ 2

)
�

(
− 1√

σ 2x

(
x

μ
+ 1

))
.

The expectation and variance are equal to μ and σ 2μ3, respectively. Replacing these expressions
into Equation (3) leads to the Kw-inverse Gaussian distribution, say KwIG(a, b, μ, σ 2).

Figure 1 illustrates some of the possible shapes of the density functions for some Kw-G
distributions. Figure 2 does the same for the hazard functions defined by h(x) = f (x)/{1 − F(x)}.
These plots illustrate the great flexibility achieved with the Kw-G distributions.

−2 0 2 4

0
1

2
3

4
5

x

h(
x)

a = 1, b
(a) (b)

(c) (d)

= 1
a = 2, b = 4
a = 8, b = 2
a = 2, b = 0.4
a = 0.5, b = 0.5

0 2 4 6 8

0
1

2
3

4

x

h(
x)

a = 1, b = 1, α = 1
a = 2, b = 4, α = 1
a = 2, b = 2, α = 2
a = 3, b = 3, α = 4
a = 2, b = 0.5, α = 2

−1 0 1 2 3

0
5

10
15

20

x

h(
x)

a = 1, b = 1
a = 2, b = 4
a = 5, b = 2
a = 0.5, b = 2
a = 0.5, b = 0.5

0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

x

h(
x)

a = 1, b = 1, μ = 1, σ2 = 1
a = 3, b = 0.2, μ = 1, σ2 = 8
a = 2, b = 1, μ = 2, σ2 = 2
a = 3, b = 0.2, μ = 1.8, σ2 = 4
a = 1, b = 1, μ = 0.5, σ2 = 0.5

Figure 2. (Available in colour online). (a) Kw-normal (a, b, 0, 1), (b) Kw-gamma (a, b, 1, α), (c) Kw-Gumbel (a, b, 0, 1)

and (d) Kw-inverse Gaussian (a, b, μ, σ 2) hazard functions (the dashed lines represent the parent distributions).
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3. A general expansion for the density function

For b > 0 real non-integer, we use the series representation

{1 − G(x)a}b−1 =
∞∑
i=0

(−1)i
(

b − 1

i

)
G(x)a i,

where the binomial coefficient is defined for any real. From the above expansion and formula (3),
we can write the Kw-G density as

f (x) = g(x)

∞∑
i=0

wiG(x)a(i+1)−1, (5)

where the coefficients are

wi = wi(a, b) = (−1)ia b

(
b − 1

i

)

and
∑∞

i=0 wi = 1.
If b is an integer, the index i in the previous sum stops at b − 1. If a is an integer, formula (5)

shows that the density of the Kw-G distribution is just equal to the density of the G distribution
multiplied by an infinite weighted power series of cdfs of the G distribution. Otherwise, if a is
real non-integer, we can expand G(x)a(i+1)−1 as follows

G(x)a(i+1)−1 = [1 − {1 − G(x)}]a(i+1)−1 =
∞∑

j=0

(−1)j
(

a(i + 1) − 1

j

)
{1 − G(x)}j

and then

G(x)a(i+1)−1 =
∞∑

j=0

j∑
r=0

(−1)j+r

(
a(i + 1) − 1

j

)(
j

r

)
G(x)r .

Further, the density f (x) in Equation (3) can be rearranged in the form

f (x) = g(x)

∞∑
i,j=0

j∑
r=0

wi,j,rG(x)r , (6)

where the coefficients

wi,j,r = wi,j,r (a, b) = (−1)i+j+r a b

(
a(i + 1) − 1

j

)(
b − 1

i

)(
j

r

)
(7)

are constants satisfying
∑∞

i,j=0

∑j

r=0 wi,j,r = 1.
Expansion (6), which holds for any real non-integer a, gives the pdf of the Kw-G distribution

as an infinite weighted power series of cdfs of the G distribution. If b is an integer, the index i in
Equation (6) stops at b − 1. Hence, for any a real non-integer, the pdf of the Kw-G distribution is
given by three (two infinite and one finite) weighted power series sums of the baseline cdf G(x).
The constants wi,j,r in formula (7) are readily computed numerically using existing software.
Recall that, if a is an integer, the density of the Kw-G distribution in Equation (5) is given by only
one infinite weighted power series sum of the baseline distribution function G(x).
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890 G.M. Cordeiro and M. de Castro

For the real non-integer a, we can derive an alternative expansion for double checking, although
more expensive computationally, with three infinite sums instead of two infinite sums and one
finite sum as in formula (6). First of all, we calculate a power series expansion for G(x)q which
holds for any q > 0 real non-integer. We have

G(x)q = [1 − {1 − G(x)}]q =
∞∑

j=0

(
q

j

)
(−1)j {1 − G(x)}j

and then

G(x)q =
∞∑

j=0

j∑
r=0

(−1)j+r

(
q

j

)(
j

r

)
G(x)r .

Replacing
∑∞

j=0

∑j

r=0 by
∑∞

r=0

∑∞
j=r , we obtain

G(x)q =
∞∑

r=0

∞∑
j=r

(−1)j+r

(
q

j

)(
j

r

)
G(x)r

and

G(x)q =
∞∑

r=0

sr (q)G(x)r , (8)

where the coefficients are

sr (q) =
∞∑

j=r

(−1)r+j

(
q

j

)(
j

r

)
, (9)

for r = 0, 1, . . .. From the density (3) by expanding G(x)a(j+1) as in formula (8), we immediately
have the Kw-G density to be

f (x) = g(x)

∞∑
j,r=0

tj (a, b)G(x)r , (10)

where the coefficients tj (a, b) are defined by

tj (a, b) = (−1)j a b

(
b − 1

j

)
sr (a(j + 1) − 1). (11)

Hence, for a, a real non-integer, the pdf of the Kw-G distribution is now given by three infi-
nite weighted power series sums of the baseline distribution function G(x), i.e. two sums in
Equation (10) and one sum for the coefficients tj (a, b) defined in Equation (11) which come from
Equation (9). The coefficients tj (a, b) are readily computed numerically using standard statistical
software. Equations (5), (6) and (10) are the main results of this section and play an important role
in this paper. In the numerical calculations using these equations, infinity should be substituted
by a large integer number.

We conclude this section with an additional result involving the beta-G density function. For
the integer a, the expansion of the density function in Equation (4) is

f (x) = g(x)

∞∑
i=0

wiG(x)a+i−1, (12)

where wi = wi(a, b) = (−1)i
(
b−1

i

)
/B(a, b). We note that the main difference between the mix-

ture forms in Equations (5) and (12) is basically the power of the cdf G(x). For the Kw-G
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distribution, the power is a(i + 1) − 1, whereas for the beta-G distribution is a + i − 1. The
weights of both representations are also different. For the real non-integer a, the main difference
of the density expansions is given by the weights.

4. General formulae for the moments

The sth moment of the Kw-G distribution can be expressed as an infinite weighted sum of PWMs
of order (s, r) of the parent distribution G from Equation (5) for the integer a and from Equation (6)
(or Equation (10)) for the real non-integer a. We assume Y and X following the baseline G and
Kw-G distribution, respectively. The sth moment of X, say μ′

s , can be expressed in terms of the
(s, r)th PWMs τs,r = E{Y sG(Y )r} of Y for r = 0, 1, . . ., as defined by Greenwood et al. [15].
For the integer a, we obtain

μ′
s =

∞∑
r=0

wrτs, a(r+1)−1, (13)

whereas for the real non-integer a, we write from formula (6)

μ′
s =

∞∑
i,j=0

j∑
r=0

wi,j,rτs,r . (14)

Formulae (13) and (14) are of very simple forms and constitute the main results of this section.
We can calculate the moments of the Kw-G distribution in terms of infinite weighted sums of
PWMs of the G distribution. Established power series expansions to calculate the moments of
any Kw-G distribution can be more efficient than computing these moments directly by numerical
integration of the expression

μ′
s = ab

∫
xsg(x)G(x)a−1{1 − G(x)a}b−1 dx,

which can be prone to rounding off errors among others.

5. Order statistics

Order statistics make their appearance in many areas of statistical theory and practice. The den-
sity fi:n(x) of the ith order statistic, for i = 1, . . . , n, from i.i.d. random variables X1, . . . , Xn

following any Kw-G distribution, is simply given by

fi:n(x) = f (x)

B(i, n − i + 1)
F (x)i−1{1 − F(x)}n−i

= ab

B(i, n − i + 1)
g(x)G(x)i−1[1 − {1 − G(x)a}b]{1 − G(x)a}b(n−i+1)−1,

where B(·, ·) denotes the beta function, and then

fi:n(x) = f (x)

B(i, n − i + 1)

n−i∑
j=0

(−1)j
(

n − i

j

)
F(x)i+j−1. (15)

We now present an expression for the density of order statistics of the Kw-G distribution
as a function of the baseline density multiplied by infinite weighted sums of powers of G(x).
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This result enables us to derive the ordinary moments of order statistics of the Kw-G distribution
as infinite weighted sums of PWMs of the G distribution. In Section 7, we offer a simple alternative
formula for the moments of order statistics of the Kw-G distribution.

From Equation (2), we obtain an expansion for F(x)i+j−1

F(x)i+j−1 =
i+j−1∑
k=0

(
i + j − 1

k

)
(−1)k{1 − G(x)a}kb.

Using the series expansion for {1 − G(x)a}kb

{1 − G(x)a}kb =
∞∑

m=0

(−1)m
(

kb

m

)
G(x)ma

and then from Equation (8), we obtain

F(x)i+j−1 =
i+j−1∑
k=0

(
i + j − 1

k

)
(−1)k

∞∑
r=0

vr(a, b, k)G(x)r , (16)

where the coefficients vr(a, b, k) are defined by

vr(a, b, k) =
∞∑

m=0

(−1)m
(

kb

m

)
sr (ma)

and the quantities sr (ma) come easily from Equation (9). By interchanging the sums in formula
(16), we have

F(x)i+j−1 =
∞∑

r=0

pr,i+j−1(a, b)G(x)r ,

where the coefficients pr,u(a, b) can be calculated as

pr,u(a, b) =
u∑

k=0

(
u

k

)
(−1)k

∞∑
m=0

∞∑
l=r

(−1)mr+l

(
kb

m

)(
ma

l

)(
l

r

)
(17)

for r, u = 0, 1, . . ..
If a is a real non-integer, inserting Equations (6) and (16) into Equation (15) and changing

indices, we can rewrite the density fi:n(x) in the form

fi:n(x) = g(x)

B(i, n − i + 1)

n−i∑
j=0

(−1)j
(

n − i

j

) ∞∑
r,u,v=0

v∑
t=0

wu,v,t pr,i+j−1(a, b) G(x)r+t . (18)

If a is an integer, we can obtain from formulae (5), (15) and (16)

fi:n(x) = g(x)

B(i, n − i + 1)

n−i∑
j=0

(−1)j
(

n − i

j

) ∞∑
r,u=0

wu pr,i+j−1(a, b) G(x)a(u+1)+r−1. (19)

Formulae (18) and (19) immediately yield the density of order statistics of the Kw-G distribution
as a function of the density of the baseline distribution multiplied by infinite weighted sums
of powers of G(x). Hence, the ordinary moments of order statistics of the Kw-G distribution
can be written as infinite weighted sums of PWMs of the G distribution. These generalized
moments for some baseline distributions can be accurate computationally by numerical integration
as mentioned before.
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6. Probability weighted moments

A general theory for PWMs covers the summarization and description of theoretical probability
distributions, the summarization and description of observed data samples, nonparametric estima-
tion of the underlying distribution of an observed sample, estimation of parameters and quantiles
of probability distributions and hypothesis testing for probability distributions. The PWM method
can generally be used for estimating parameters of a distribution whose inverse form cannot be
expressed explicitly.

The (s, r)th PWM of X following the Kw-G distribution, say τKw
s,r , is formally defined by

τKw
s,r = E{XsF(X)r} =

∫ ∞

−∞
xsF (x)rf (x)dx.

From Equations (6) and (16) we can write

τKw
s,r =

∞∑
m,u,v=0

v∑
l=0

pr,m(a, b)wu,v,lτs,m+l , (20)

where τs,m+l = ∫ ∞
−∞ xs G(x)m+l g(x)dx is the (s, m + l)th PWM of the G distribution and the

coefficients pr,m(a, b) are just defined in Equation (17).
Formula (20) shows that any PWM of the Kw-G distribution can be calculated from an infinite

weighted linear combination of PWMs of the G distribution. Clearly, the generalized moments
τKw
s,r can be obtained numerically in many existing software by taking a large number to substitute

infinity in Equation (20). PWMs of the baseline distributions can be evaluated by numerical
integration as discussed before.

In estimation problems, we frequently use the moments of order (1, r). For example, for the
Gumbel and Weibull distributions [15], we have

τ1,r = μ + σ {log(1 + r) + γ }
1 + r

and τ1,r =
r∑

k=0

(
r

k

)
(−1)k

�(1 + 1/c)

β(1 + k)1+1/c
,

respectively. Thus, the quantities τKw
1,r for the KwGu and KwW distributions are easily computed

from Equation (20).

7. Alternative formula for moments of order statistics

We now offer an alternative formula for the moments of order statistics of the Kw-G distribution
based on PWMs of the G distribution. We use the formula for the sth moment due to Barakat and
Abdelkader [16] applied to the independent and identically distributed case, subject to existence,

E(Xs
i:n) = s

n∑
j=n−i+1

(−1)j−n+i−1

(
j − 1

n − i

)(
n

j

)
Ij (s), (21)

where Ij (s) denotes the integral

Ij (s) =
∫ ∞

−∞
xs−1{1 − F(x)}j dx.
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Using the binomial expansion and interchanging terms, the last integral becomes

Ij (s) =
j∑

m=0

(−1)m
(

j

m

)
τKw
s−1,m,

where τKw
s−1,m = ∫ ∞

−∞ xs−1F(x)m dx.
Inserting the expression for Ij (s) in formula (21) yields

E(Xs
i:n) = s

n∑
j=n−i+1

j∑
m=0

(−1)j−n+i+m−1

(
j − 1

n − i

)(
n

j

)(
j

m

)
τKw
s−1,m, (22)

where the PWMs τKw
s−1,m of the Kw-G distribution are immediately obtained from Equation (20)

as linear functions of PWMs of the G distribution. Thus, we show that the moments of order
statistics of the Kw-G distribution can be expressed explicitly in terms of infinite weighted sums
of PWMs of the G distribution. Formula (22) is the main result of this section.

The L-moments are analogous to the ordinary moments but can be estimated by linear combi-
nations of order statistics. The L-moments have several theoretical advantages over the ordinary
moments. They exist whenever the mean of the distribution exists, even though some higher
moments may not exist. They are able to characterize a wider range of distributions and, when
estimated from a sample, are more robust to the effects of outliers in the data. Unlike usual
moment estimates, the parameter estimates obtained from L-moments are sometimes more accu-
rate in small samples than even the maximum likelihood estimates (MLEs). The L-moments are
linear functions of expected order statistics defined as

λr+1 = (r + 1)−1
r∑

k=0

(−1)k
(

r

k

)
E(Xr+1−k:r+1), r = 0, 1, . . . ,

see [17]. The first four L-moments are λ1 = E(X1:1), λ2 = 1/2E(X2:2 − X1:2), λ3 = 1/3
E(X3:3 − 2X2:3 + X1:3) and λ4 = 1/4E(X4:4 − 3X3:4 + 3X2:4 − X1:4).

From Equation (22) applied to the means (s = 1) of order statistics, we can easily obtain
expansions for the L-moments of the Kw-G distribution. The L-moments can also be calculated
in terms of PWMs given in Equation (20) as

λr+1 =
r∑

k=0

(−1)r−k

(
r

k

)(
r + k

k

)
τKw

1,k , r = 0, 1, . . . .

In particular, λ1 = τKw
1,0 , λ2 = 2τKw

1,1 − τKw
1,0 , λ3 = 6τKw

1,2 − 6τKw
1,1 + τKw

1,0 and λ4 = 20τKw
1,3 − 30τKw

1,2 +
12τKw

1,1 − τKw
1,0 .

8. Inference

Henceforth, let γ be the p-dimensional parameter vector of the baseline distribution in Equations
(2) and (3). We consider independent random variables X1, . . . , Xn, each Xi following a Kw-G
distribution with parameter vector θ = (a, b, γ ). The log-likelihood function � = �(θ) for the
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model parameters obtained from Equation (3) is

�(θ) = n{log(a) + log(b)} +
n∑

i=1

log{g(xi; γ )} + (a − 1)

n∑
i=1

log{G(xi; γ )}

+ (b − 1)

n∑
i=1

log{1 − G(xi; γ )a}.

The elements of the score vector are given by

∂�(θ)

∂a
= n

a
+

n∑
i=1

log{G(xi; γ )}
{

1 − (b − 1)G(xi; γ )a

1 − G(xi; γ )a

}
,

∂�(θ)

∂b
= n

b
+

n∑
i=1

log{1 − G(xi; γ )a}

and

∂�(θ)

∂γj

=
n∑

i=1

[
1

g(xi; γ )

∂g(xi; γ )

∂γj

+ 1

G(xi; γ )

∂G(xi; γ )

∂γj

{
1 − a(b − 1)

G(xi; γ )−a − 1

}]
,

for j = 1, . . . , p. These partial derivatives depend on the specified baseline distribution. Numer-
ical maximization of the log-likelihood above is accomplished by using the RS method [18]
available in the gamlss package [14] in R Development Core Team [19]. Since numerically the
maximum likelihood estimation of the parameters of the Kw-G distributions is much simpler than
the estimation of the parameters of the generalized beta distributions, we recommend using Kw-G
distributions in place of the second family of distributions. Under suitable regularity conditions,
the asymptotic distribution of the maximum likelihood estimator θ̂ is multivariate normal with the
mean vector θ and the covariance matrix that can be estimated by {−∂2�(θ)/∂θ∂θ�}−1 evaluated
at θ = θ̂ . The required second derivatives are computed numerically.

Consider two nested Kw-G distributions: a Kw-GA distribution with corresponding param-
eters θ1, . . . , θr and maximized log-likelihood −2�(θ̂A), and a Kw-GB distribution containing
the same parameters θ1, . . . , θr plus additional parameters θr+1, . . . , θp and maximized log-
likelihood −2�(θ̂B), the models otherwise being identical. For testing the Kw-GA distribution
against the Kw-GB distribution, the likelihood ratio statistic (LR) is simply equal to the difference
−2{�(θ̂A) − �(θ̂B)} and has an asymptotic χ2

p−r distribution.
We can compare non-nested Kw-G distributions by penalizing the over-fitting using the Akaike

information criterion given by AIC = −2�(θ̂) + 2p�, where p� is the number of model param-
eters. The distribution with the smallest value of AIC (among all distributions considered) is
usually taken as the best model for describing the given data set. This comparison is based on the
consideration of a model that shows a lack of fit with one that does not.

9. Application

In this section, we present an example with data from adult numbers of T. confusum cultured at
29 ◦C presented by Eugene et al. [1]. Table 1 gives AIC values in increasing order for some fitted
distributions and the MLEs of the parameters together with its standard errors. According to AIC,
the beta normal and Kw-normal distributions yield slightly different fittings, outperforming the
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Table 1. AIC in increasing order, parameter estimates and standard errors for the adjusted distributions.

Parameter estimate (standard error)

Distribution AIC a b

Beta normal 7176.9 18.20 (12.7) 0.25 (0.0749) μ = 12.69 (23.4) σ = 42.76 (8.89)
Kw-normal 7177.4 14.86 (1.74) 0.27 (0.0531) μ = 25.52 (0.592) σ = 42.24 (3.86)
Kw-exponential 7180.3 15.54 (3.61) 1.34 (0.325) β = 46.22 (6.98)
Kw-gamma 7180.9 1.85 (1.36) 0.67 (0.476) α = 7.37 (6.31) β = 14.21 (11.7)
Gamma 7183.9 α = 8.99 (0.474) β = 15.56 (0.843)

remaining selected distributions. Notice that for the beta normal distribution, the variability in the
estimates of a, μ and σ is appreciably greater.

The fitted distributions superimposed to the histogram of the data in Figure 3 reinforce the
result in Table 1 for the gamma distribution. The beta normal and the Kw-normal distributions are
almost indistinguishable. This claim is further strengthened by the comparison between observed
and expected frequencies in Table 2. The mean absolute deviation (MAD) between expected and
observed frequencies reaches the minimum value for the beta-normal distribution.

Based on the values of the LR statistic (Section 8), the Kw-gamma and the Kw-exponential dis-
tributions are not significantly different yielding LR = 1.542 (1 df p-value = 0.214). Comparing
the Kw-gamma and the gamma distributions, we find a significant difference (LR = 6.681, 2 df
p-value = 0.035).

Adult number
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Figure 3. (Available in colour online). Histogram of adult number and fitted pdfs.
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Table 2. Observed and expected frequencies of adult numbers for T. confusum cultured at 29 ◦C and MAD between the
frequencies.

Expected

Adult number Observed Gamma Kw-exponential Kw-normal Beta normal

30 1 0.75 0.19 0.21 0.22
50 1 9.85 6.32 5.77 5.67
70 40 39.72 37.82 37.43 37.39
90 96 83.59 90.75 91.85 93.70
110 122 117.15 127.14 125.53 127.54
130 140 124.56 127.81 123.95 123.73
150 92 108.51 104.22 102.41 100.77
170 70 81.35 74.35 75.95 74.30
190 44 54.24 48.68 52.00 50.97
210 38 32.93 30.16 33.18 32.80
230 25 18.51 18.03 19.80 19.86
250 13 9.76 10.53 11.06 11.32
270 4 4.87 6.06 5.79 6.08
290 1 2.32 3.46 2.84 3.08
310 1 1.06 1.96 1.31 1.47
330 2 0.47 1.10 0.56 0.66
Total 690 689.7 688.6 689.6 689.5
MAD 6.17 4.74 4.60 4.39

10. Conclusions

Following the idea of the class of beta generalized distributions [1] and the distribution by
Kumaraswamy [5], we define a new family of Kw generalized (Kw-G) distributions to extend
several widely known distributions such as the normal, Weibull, gamma and Gumbel distribu-
tions. For each distribution G, we can define the corresponding Kw-G distribution using simple
formulae.

We show how some mathematical properties of the Kw-G distributions are readily obtained
from those of the parent distributions. The moments of the Kw-G distribution can be expressed
explicitly in terms of infinite weighted sums of PWMs of the G distribution. The same happens
for the moments of order statistics and PWMs of the Kw-G distributions.

We discuss maximum likelihood estimation and inference on the parameters. The maximum
likelihood estimation in Kw-G distributions is much simpler than the estimation in beta general-
ized distributions. Further, we can easily compute the maximum values of the unrestricted and
restricted log-likelihoods to construct LR statistics for testing nested models in the new family of
distributions. An application of the new family to real data is given to show the feasibility of our
proposal. We hope this generalization may attract wider applications in statistics.
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