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a b s t r a c t

A new class of extended Birnbaum–Saunders regression models is introduced. It can be
applied to censored data and be used more effectively in survival analysis and fatigue life
studies. Maximum likelihood estimation of the model parameters with censored data as
well as influence diagnostics for the new regression model are investigated. The normal
curvatures for studying local influence are derived under various perturbation schemes
and a martingale-type residual is considered to assess departures from the extended
Birnbaum–Saunders error assumption as well as to detect outlying observations. Further,
a test of homogeneity of the shape parameters of the new regression model is proposed.
Two real data sets are analyzed for illustrative purposes.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The two-parameter Birnbaum–Saunders (BS) distribution, also known as the fatigue life distribution, was introduced by
Birnbaum and Saunders (1969) and has received considerable attention in recent years. It was originally derived from a
model for a physical fatigue process where dominant crack growth causes failure. It was later derived by Desmond (1985)
using a biological model which followed from relaxing some of the assumptions originally made by Birnbaum and Saunders
(1969). The relationship between the BS distribution and the inverse Gaussian distribution was investigated by Desmond
(1986) who demonstrated that the BS distribution is an equal-weight mixture of an inverse Gaussian distribution and
its complementary reciprocal. For book treatments of inverse Gaussian and BS distributions and their relationships, see
Marshall andOlkin (2007, Chapter 13) and especially Saunders (2007, Chapter 10).More recently, Jones (2012) also discussed
the relationship between the BS and the inverse Gaussian distributions.

The cumulative distribution function of a random variable T with BS distribution, say T ∼ BS(α, η), is G(t) = Φ(v),
with t > 0, where Φ(·) is the standard normal cumulative function, v = v(t) = ρ(t/η)/α, ρ(z) = z1/2 − z−1/2, and
α > 0 and η > 0 are the shape and scale parameters, respectively. The shape of the hazard function of the BS distribution
is discussed in Kundu et al. (2008). The authors showed that the hazard function is not monotone and is unimodal for all
ranges of the parameter values. Some interesting results on improved statistical inference as well as interval estimation
for the BS distribution may be revised in Wu and Wong (2004), Lemonte et al. (2007, 2008) and Wang (2012). The BS
distribution has been applied in a wide variety of fields. For the applications of the BS distributions, read, for example,
Balakrishnan et al. (2007) in reliability and Leiva et al. (2008, 2009) in other fields. It is worthwhile to mention that there
has been a great deal of progress recently in developing statistical methodology for the BS model and its generalizations.
Notable contributions include Professor Narayanaswamy Balakrishnan (http://www.math.mcmaster.ca/bala/bala.html) and
co-workers, and Professor Victor Leiva (http://staff.deuv.cl/leiva/) and co-workers.
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On the basis of the scheme proposed by Marshall and Olkin (1997), Lemonte (2013) introduced a quite flexible
distributionwhich can be used tomodel failure times formaterials subject to fatigue and lifetime data. The new distribution
was called by the author as the Marshall–Olkin extended Birnbaum–Saunders (MOEBS) distribution. Hereafter, the random
variable T is said to have a MOEBS distribution with shape parameters α > 0 and λ > 0, and scale parameter η > 0, say
T ∼ MOEBS(λ, α, η), if its cumulative function is given by

G(t) =
Φ(v)

1 − λ̄Φ(−v)
, t > 0, (1)

where λ̄ = 1 − λ. The survival function is S(t) = λΦ(−v)/[1 − λ̄Φ(−v)], whereas the probability density function
corresponding to (1) takes the form g(t) = λ κ(α, η) t−3/2 (t+η) [1− λ̄Φ(−v)]−2 exp


−τ(t/η)/(2α2)


, where κ(α, η) =

exp(α−2)/(2α
√
2πη) and τ(z) = z + z−1. It can be shown that if T ∼ MOEBS(λ, α, η), then kT ∼ MOEBS(λ, α, kη), for

k > 0, i.e. the class of MOEBS distributions is closed under scale transformations. The two-parameter BS distribution arises
from (1) when λ = 1, that is, T ∼ BS(α, η) = MOEBS(1, α, η).

Rieck and Nedelman (1991) proposed a log-linear regression model based on the BS distribution. They showed that if
T ∼ BS(α, η), then Y = log(T ) is sinh-normal (SN) distributed with shape, location and scale parameters given by α,
µ = log(η) and σ = 2, respectively; that is, the log-BS (LBS) distribution is a special case of the SN distribution introduced
by them and, in this case, the notation Y ∼ LBS(α, µ) is considered. The SN distribution is symmetrical, presents greater and
smaller degrees of kurtosis than the normal model and also has bi-modality. Their regressionmodel has received significant
attention over the last few years by many researchers. For some recent references about the BS regression model, the
reader is refereed to Desmond et al. (2008), Xiao et al. (2010), Lemonte et al. (2010), Lemonte (2011), Lemonte and Ferrari
(2011a,b,c), Qu and Xie (2011) and Li et al. (2012), among others.

Some generalizations of the log-linear BS regression model have been proposed in the statistical literature. For example,
some efforts can be found in the works by Barros et al. (2008), Lemonte and Cordeiro (2009), Santana et al. (2011), Lemonte
(2012), Desmond et al. (2012) and Villegas et al. (2011). Barros et al. (2008) introduced the generalized BS regression model
based on the BS-tν distribution (that is, based on the BS Student-t model with ν degrees of freedom), Lemonte and Cordeiro
(2009) proposed a non-linear BS regression model, Santana et al. (2011) and Lemonte (2012) introduced the skewed BS
regression model, whereas Villegas et al. (2011) and Desmond et al. (2012) studied a mixed log-linear model based on the
BS distribution.

In this paper, in addition to the existing generalizations of the BS regression model, we shall propose the extended BS
regression model based on the MOEBS distribution; that is, we will introduce a new class of lifetime regression models in
which the errors follow the log-MOEBS distribution. Themainmotivation for introducing this new class of regressionmodels
relies on the fact that the practitioners will have a new BS regression model to use in practical applications. Moreover,
the formulas related with the new regression model are manageable and with the use of modern computer resources and
its numerical capabilities, the proposed model may prove to be an useful addition to the arsenal of applied statisticians.
Additionally, the new model is quite flexible and can be widely applied in analyzing lifetime data. Further, we provide two
applications to real data sets which show that the new regression model yields a better fit than the usual BS regression
model. Furthermore, the new extended BS regressionmodel can be used for modeling censored data as well as data without
censoring. It should be mentioned that censored data is very common in lifetime data because of time limits and other
restrictions on data collection. In a engineering life test experiment, for example, it is usually not feasible to continue
experimentation until all items under study have failed. In a survival study, patients follow-up may be lost and also data
analysis is usually done before all patients have reached the event of interest. The partial information contained in the
censored observations is just a lower bound on the lifetime distribution. Reliability studies usually finish before all units
have failed, even making use of accelerated tests. This is a special source of difficulty in the analysis of reliability data. Such
data are said to be censored at right and they arisewhen some units are still running at the time of the data analysis, removed
from test before they fail or because they failed from an extraneous cause. We refer the reader to Gijbels (2010) for a recent
overview on censored data.

It is nowadays a well spread practice, after modeling, to check the model assumptions and conduct diagnostic studies
in order to detect possible influential observations that may distort the results of the analysis. Diagnostic analysis is an
efficient way to detect influential observations. The first technique developed to assess the individual impact of cases
on the estimation process is, perhaps, the case deletion which became a very popular tool. Cook (1977) presents a great
development of case deletion diagnostics for a general statistical model. Case deletion is an example of a global influence
analysis, that is, the effect of an observation is assessed by completely removing it. However, case deletion excludes all
information from an observation and we can hardly say whether this observation has some influence on a specific aspect of
themodel. To overcome this problem, one can resort to local influence approachwhere one investigates themodel sensitivity
under small perturbations. In this context, Cook (1986) proposed a general framework to detect influential observations
which gives ameasure of this sensitivity under small perturbations on the data or in themodel.Many applications of the local
influencemethodmay be found in the statistical literature for variousmodels and under different perturbation schemes. For
instance, Espinheira et al. (2008), Vasconcellos and Fernandez (2009), Patriota et al. (2010), Lemonte and Patriota (2011),
Zevallos et al. (2012) and Matos et al. (2013), among others. In this paper, we also propose a similar methodology to detect
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influential subjects in the new extended BS regression model. In particular, we obtain explicit formulas for Cook’s (1986)
normal curvature measure under three perturbation schemes.

The paper unfolds as follows. The log-MOEBSdistribution is proposed in Section 2. In Section 3,we introduce the extended
BS regression model and discuss estimation of the model parameters. Specifically, we compute the maximum likelihood
estimating equations by assuming random censoring. In Section 4, the normal curvatures of local influence are derived
under various perturbation schemes and a kind of deviance residual is proposed to assess departures from the underlying
log-MOEBS distribution as well as to detect outlying observations. In Section 5, we propose a likelihood ratio statistic for
testing the homogeneity of the shape parameters. Two real data illustrations are considered in Section 6. The paper ends up
with some concluding remarks in Section 7.

2. The log-MOEBS distribution

Let T be a random variable having theMOEBS cumulative function (1). The random variable Y = log(T ) has a log-MOEBS
(LMOEBS) distribution. After some algebra, the survival function, the cumulative function and the density function of Y ,
parameterized in terms of µ = log(η), can be expressed, respectively, as

S(y) =
λΦ(−ξ2)

1 − λ̄Φ(−ξ2)
, F(y) =

Φ(ξ2)

1 − λ̄Φ(−ξ2)
, y ∈ R,

f (y) =
λ ξ1 φ(ξ2)

2 [1 − λ̄Φ(−ξ2)]2
, y ∈ R, (2)

where φ(·) is the standard normal density function,

ξ1 =
2
α

cosh

y − µ

2


, ξ2 =

2
α

sinh

y − µ

2


.

Evidently, the density function (2) does not involve any complicated function and hence can be easily computed numerically.
If Y is a random variable having density function (2), we write Y ∼ LMOEBS(λ, α, µ). Thus, if T ∼ MOEBS(λ, α, η), then
Y = log(T ) ∼ LMOEBS(λ, α, µ); that is, if Y ∼ LMOEBS(λ, α, µ), then T = exp(Y ) follows the MOEBS distribution with
shape parameters λ and α, and scale parameter η = exp(µ). We have that the LMOEBS and MOEBS models correspond to
a logarithmic distribution and its associated distribution, respectively (Marshall and Olkin, 2007, Chapter 12). The special
case λ = 1 corresponds to the LBS distribution introduced by Rieck and Nedelman (1991).

The LMOEBS density function can take various forms depending on the parameter values. Plots of the density (2) for
selected parameter values are given in Fig. 1. These plots show great flexibility of the new distribution for different values of
the shape parameters λ and α. So, the LMOEBS density function (2) allows for great flexibility and hence it can be very useful
inmanymore practical situations. In fact, it can be symmetric, asymmetric and it can also exhibit bi-modality. Unfortunately,
it is very difficult (or even impossible) to determine analytically (theoretically) for what values of α and λ the LMOEBS
density function (2) is bi-modal. The plots in Fig. 1 indicate that the LMOEBS distribution is very versatile and that the shape
parameter λ has a substantial effect on its skewness and kurtosis.

The sth moment of Y ∼ LMOEBS(λ, α, µ) is given by

E(Y s) = λ

s
k=0

 s
k


2k µs−k Ik(λ, α), (3)

where

Ik(λ, α) =

 1

0
arcsinh


−
αΦ−1(u)

2

k

(1 − λ̄ u)−2 du.

The functionΦ−1(·) denotes the standard normal quantile function. It is not known how Ik(λ, α) can be reduced to a closed-
form expression. However, this integral can be easily computed numerically in software such as Ox (Doornik, 2009) and R (R
Development Core Team, 2012). The skewness and kurtosis measures can be calculated from the ordinary moments given
in (3) using well-known relationships. In particular, we have E(Y ) = µ + 2 λ I1(λ, α). The function I1(λ, α) is plotted as
function of λ and α in Fig. 2. This figure reveals that for λ < 1, I1(λ, α) is a decreasing function of α, whereas for λ > 1,
I1(λ, α) is an increasing function of α. The case λ = 1 implies I1(λ, α) = 0 for any α > 0.

The quantile function of the LMOEBS(λ, α, µ) distribution takes the form

y(u) = µ+ 2 arcsinh(m(u)), u ∈ (0, 1),

where m(u) = m(u; λ, α) = αΦ−1(λ u/[1 − λ̄ u])/2. The quantile function can also be expressed as y(u) = µ +

2 log

m(u)+


m(u)2 + 1


. The newmodel is easily simulated as follows: if U ∼ U(0, 1), then Y = µ+ 2 arcsinh(m(U))

has the LMOEBS(λ, α, µ) distribution. This scheme is useful because of the existence of fast generators for uniform random
variables and the standard normal quantile function is available in most statistical packages.
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Fig. 1. Plots of the LMOEBS density function for some parameter values (µ = 0): (a) (λ, α) = {(0.2, 5), (0.6, 3), (0.8, 2), (1.0, 1), (4.8, 2), (4, 5)}; (b) (λ, α) =

{(3.2, 8), (1.5, 9), (2.8, 20), (0.5, 8), (0.3, 8), (1.1, 20)}; (c) (λ, α) = {(0.2, 2), (0.5, 2), (1.0, 2), (2.0, 2), (4.0, 2), (6.0, 2)}; (d) (λ, α) = {(1.2, 4), (1.1, 6), (1.5, 2),
(0.9, 2), (1, 1.7), (2.2, 2.3)}.

Fig. 2. Plot of the function I1(λ, α).
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3. The model and estimation

The extended BS regression model (that is, the LMOEBS regression model) is defined in the form

yi = x⊤

i β + εi, i = 1, . . . , n, (4)

where yi is the observed log-lifetime or log-censoring time for the ith individual, xi = (xi1, . . . , xip)⊤ is a vector of known
explanatory variables associatedwith yi,β = (β1, . . . , βp)

⊤ is a p-vector (where p < n and it is fixed) of unknown regression
parameters to be estimated and εi ∼ LMOEBS(λ, α, 0). It is also assumed that the random variables εi’s are independent
and identically distributed. The extended BS regression model (4) opens new possibilities for fitting many different types
of data. It is an extension of the accelerated failure time model based on the BS distribution for censored data, which arises
when λ = 1 (see, for example, Leiva et al., 2007).

In the following, we will assume right random (or non-informative) censoring and that the observed lifetime and
censoring time are independent. Consider the situation where the time to the event (T ) is not completely observed and
is subjected to right censoring. Let C denote the censoring time. We then observe zi = min{Ti, Ci} and δi = I(Ti ≤ Ci), for
i = 1, . . . , n, where I(·) is the indicator function, that is, δi = 1 if Ti is the observed time to the event and δi = 0 if it is right
censored, for i = 1, . . . , n. From n pairs (y1, δ1), . . . , (yn, δn), where yi = log(zi) (that is, the ith log-lifetime or log-censoring
time), the total log-likelihood function for θ = (λ, α,β⊤)⊤ under non-informative censoring can be expressed, apart from
an unimportant constant, as

ℓ(θ) = n log(λ)+

n
i=1

δi

log(ξi1)− (1/2)ξ 2i2 − log[Φ(−ξi2)] − log[1 − λ̄Φ(−ξi2)]


+

n
i=1

log


Φ(−ξi2)

1 − λ̄Φ(−ξi2)


, (5)

where

ξi1 = ξi1(θ) =
2
α

cosh

yi − µi

2


, ξi2 = ξi2(θ) =

2
α

sinh

yi − µi

2


,

with µi = x⊤

i β, for i = 1, . . . , n. The maximum likelihood estimates of the unknown parameters are obtained by
maximizing the log-likelihood function in (5) with respect to θ = (λ, α,β⊤)⊤.

The log-likelihood function ℓ(θ) in (5) is assumed regular (Cox and Hinkley, 1974, Chapter 9) with respect to all
derivatives up to second order. The score functions for the parameters λ, α and β are obtained by taking the partial
derivatives of (5) with respect to these parameters. They are given by

∂ℓ(θ)

∂λ
=

n
λ

−

n
i=1

(1 + δi)Φ(−ξi2)

1 − λ̄Φ(−ξi2)
,

∂ℓ(θ)

∂β
= X⊤s,

∂ℓ(θ)

∂α
= −

q
α

+
1
α

n
i=1

δi


ξ 2i2 −

ξi2 φ(ξi2)

Φ(−ξi2)
+

λ̄ ξi2 φ(ξi2)

1 − λ̄Φ(−ξi2)


+

1
α

n
i=1


ξi2 φ(ξi2)

Φ(−ξi2)
+

λ̄ ξi2 φ(ξi2)

1 − λ̄Φ(−ξi2)


,

where q is the number of uncensored observations (failures), X = (x1, . . . , xn)⊤ is a known model matrix of full rank (i.e.
rank(X) = p) and s = s(θ) = (s1, . . . , sn)⊤ with

si = si(θ) =
δi

2


ξi1 ξi2 −

ξi2

ξi1
−
ξi1 φ(ξi2)

Φ(−ξi2)
+

λ̄ ξi1 φ(ξi2)

1 − λ̄Φ(−ξi2)


+

1
2


ξi1 φ(ξi2)

Φ(−ξi2)
+

λ̄ ξi1 φ(ξi2)

1 − λ̄Φ(−ξi2)


.

The maximum likelihood estimateθ = (λ,α,β⊤

)⊤ of θ = (λ, α,β⊤)⊤ can be obtained by solving the likelihood equations

∂ℓ(θ)

∂λ
= 0,

∂ℓ(θ)

∂α
= 0,

∂ℓ(θ)

∂β
= 0,

simultaneously. There is no closed-form expression for the maximum likelihood estimator and its computation has to
be performed numerically using a non-linear optimization algorithm. The Newton–Raphson iterative technique could be
applied to solve the likelihood equations and obtain the estimateθ = (λ,α,β⊤

)⊤ numerically.
For computing the maximum likelihood estimates, starting values λ(0), α(0) and β(0) for the algorithm are required. Our

suggestion is to use β(0) = (X⊤X)−1X⊤y, the ordinary least squares estimate of this parameter vector, as an initial point
estimate for β. We suggest for α the initial value

α(0) =


4
n

n
i=1

sinh2


yi − x⊤

i β
(0)

2

1/2

.
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We suggest λ(0) = 1, which corresponds to the usual BS regression model for censored data. These initial guesses worked
well in the applications described in Section 6. The Ox matrix programming language (Doornik, 2009) and the R program
(R Development Core Team, 2012) can be used to computeθ numerically. It should be pointed out that like the SN density
function, the bi-modality of the LMOEBS density function may cause multiple maxima of the likelihood function for the
LMOEBS regression model. However, we believe that in most cases when the regression model (4) is appropriate the
likelihood will have a unique maximum.

The asymptotic inference for the parameter vector θ = (λ, α,β⊤)⊤ can be based on the normal approximation ofθ = (λ,α,β⊤

)⊤. LetΣθ be the asymptotic variance–covariance matrix forθ. Then, under some regular conditions stated in
Cox and Hinkley (1974, Chapter 9), for n large,θ a

∼ Np+2(θ,Σθ), where
a
∼ denotes approximately distributed. Additionally,

Σθ may be approximated by −L̈−1θθ , where −L̈θθ is the (p + 2)× (p + 2) observed information matrix evaluated atθ which
is obtained from

L̈θθ =
∂2ℓ(θ)

∂θ∂θ⊤
=

tr(K1) tr(K2) s⊤1 X
tr(K2) tr(K3) s⊤2 X
X⊤s1 X⊤s2 X⊤MX

 ,
where tr(·) denotes the trace operator, K1 = K1(θ) = diag{k11, . . . , kn1}, K2 = K2(θ) = diag{k12, . . . , kn2}, K3 = K3(θ) =

diag{k13, . . . , kn3}, s1 = s1(θ) = (s11, . . . , sn1)⊤, s2 = s2(θ) = (s12, . . . , sn2)⊤ and M = M(θ) = diag{m1, . . . ,mn}. After
some algebraic manipulations, we obtain

ki1 = ki1(θ) = −
1
λ2

+
(1 + δi)Φ(−ξi2)

2

[1 − λ̄Φ(−ξi2)]2
,

ki2 = ki2(θ) = −
(1 + δi) ξi2 φ(ξi2)

α [1 − λ̄Φ(−ξi2)]2
, si1 = si1(θ) = −

(1 + δi) ξi1 φ(ξi2)

2 [1 − λ̄Φ(−ξi2)]2
,

ki3 = ki3(θ) =
δi

α2


1 − 3 ξ 2i2


+
(δi − 1) ξi2 φ(ξi2)
α2Φ(−ξi2)


2 − ξ 2i2 +

ξi2 φ(ξi2)

Φ(−ξi2)


+
λ̄ (δi + 1) ξi2 φ(ξi2)
α2 [1 − λ̄Φ(−ξi2)]


−2 + ξ 2i2 +

λ̄ ξi2 φ(ξi2)

1 − λ̄Φ(−ξi2)


,

si2 = si2(θ) = −
δi ξi1 ξi2

α
+
(δi − 1) ξi1 φ(ξi2)

2αΦ(−ξi2)


1 − ξ 2i2 +

ξi2 φ(ξi2)

Φ(−ξi2)


+
λ̄ (δi + 1) ξi1 φ(ξi2)
2α [1 − λ̄Φ(−ξi2)]


−1 + ξ 2i2 +

λ̄ ξi2 φ(ξi2)

1 − λ̄Φ(−ξi2)


,

mi = mi(θ) =
δi

4


1 − ξ 2i1 − ξ 2i2 −

ξ 2i2

ξ 2i1


+
(δi − 1) φ(ξi2)
4Φ(−ξi2)


ξi2 − ξ 2i1 ξi2 +

ξ 2i1 φ(ξi2)

Φ(−ξi2)


+

λ̄ (δi + 1) φ(ξi2)
4 [1 − λ̄Φ(−ξi2)]


−ξi2 + ξ 2i1 ξi2 +

λ̄ ξ 2i1 φ(ξi2)

1 − λ̄Φ(−ξi2)


.

Besides estimation of the model parameters, hypotheses tests can be taken into account. Let θ = (θ⊤

1 , θ
⊤

2 )
⊤, where θ1

and θ2 are disjoint subsets of θ. Consider the test of the null hypothesis H0 : θ1 = θ01 against Ha : θ1 ≠ θ01, where θ01 is
a specified vector. Letθ be the restricted maximum likelihood estimator of θ obtained under H0. The likelihood ratio (LR)
statistic to test H0 is given by Λ = 2{ℓ(θ) − ℓ(θ)}. Under H0 and some regularity conditions, the LR statistic converges
in distribution to a chi-square distribution with dim(θ1) degrees of freedom. In particular, the LR statistic to test the null
hypothesis H0 : λ = 1 against Ha : λ ≠ 1 takes the form

Λ = 2{ℓ(λ,α,β)− ℓ(1,α,β)},
whereα andβ are the restricted maximum likelihood estimators of α and β, respectively, obtained from the maximization
of (5) under H0 : λ = 1. The limiting distribution of this statistic is χ2

1 under the null hypothesis. The null hypothesis is
rejected if the test statistic exceeds the upper 100(1 − γ )% quantile of the χ2

1 distribution.

4. Diagnostic analysis

Since regressionmodels are sensitive to the underlyingmodel assumptions, generally performing a sensitivity analysis is
strongly advisable. In order to assess the sensitivity of themaximum likelihood estimates of the parameters of the regression
model (4), the local influencemethod under three perturbation schemes is carried out. In order to assess departures from the
underlying LMOEBS distribution as well as to detect outlying observations, a kind of deviance residual will be considered.
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4.1. Local influence

The local influence approach based on normal curvature is an important diagnostic tool for assessing local influence of
minor perturbations to a statistical model. Assessing local influence of perturbing a statistical model has been an active area
of statistical research in the past twenty years since the seminal work of Cook (1986). Let ω ∈ Ω be a k-dimensional vector
of perturbations, where Ω ⊂ Rk is an open set. The perturbed log-likelihood function is denoted by ℓ(θ|ω). The vector of
no perturbation is ω0 ∈ Ω, such that ℓ(θ|ω0) = ℓ(θ). The Cook’s idea for assessing local influence is essentially analyzing
the local behavior of the log-likelihood displacement LDω = 2{ℓ(θ) − ℓ(θω)}, whereθω denotes the maximum likelihood
estimate under ℓ(θ|ω), around ω0 by evaluating the curvature of the plot of LDω0+ad against a, where a ∈ R and d is a unit
norm direction. One of the measures of particular interest is the direction dmax corresponding to the largest curvature Cdmax .

Cook (1986) showed that the normal curvature at the direction d is given by

Cd(θ) = 2|d⊤∆⊤L̈−1
θθ ∆d|,

where ∆ = ∂2ℓ(θ|ω)/∂θ∂ω⊤ and −L̈θθ is the observed information matrix, both ∆ and L̈θθ are evaluated atθ and ω0. So,
the quantity (1/2)Cdmax is the largest eigenvalue of B = −∆⊤L̈−1

θθ ∆ and dmax is the corresponding unit norm eigenvector
(∥dmax∥ = 1). The index plot of dmax for thematrix Bmay showhow to perturb themodel (or data) to obtain large changes in
the estimate of the parameter vector θ = (λ, α,β⊤)⊤. If the interest lies in computing the local influence for β, the normal
curvature in the direction of the vector d is Cd;β(θ) = 2|d⊤∆⊤(L̈−1

θθ − L̈22)∆d|, where

L̈22 =


L̈−1
11 0
0 0


, L̈11 =


tr(K1) tr(K2)
tr(K2) tr(K3)


.

Here, dmax;β is the unit norm eigenvector corresponding to the largest eigenvalue of the matrix B1 = −∆⊤(L̈−1
θθ − L̈22)∆.

The index plot of the largest eigenvector of B1 may reveal those influential observations on β. On the other hand, if the
interest lies in computing the local influence for (λ, α), the normal curvature in the direction of the vector d is Cd;(λ,α)(θ) =

2|d⊤∆⊤(L̈−1
θθ − L̈33)∆d|, where

L̈33 =


0 0
0 (X⊤MX)−1


.

Here, dmax;(λ,α) is the unit norm eigenvector corresponding to the largest eigenvalue of the matrix B2 = −∆⊤(L̈−1
θθ − L̈33)∆.

The index plot of the largest eigenvector of B2 may reveal those influential observations on (λ,α).
In the following, we shall obtain the matrix ∆ for the extended BS regression model under three different perturbation

schemes, namely: case weighting, response perturbation and covariate perturbation. So, we derive for these three
perturbation schemes, the matrix

∆ =
∂2ℓ(θ|ω)

∂θ∂ω⊤


θ=θ,ω=ω0

=

∆⊤

λ ∆⊤

α ∆⊤

β

⊤
.

The quantities evaluated atθ = (λ,α,β⊤

)⊤ are written with a circumflex. First, we consider a case weight perturbation
which modifies the weight given to each subject in the log-likelihood. After some algebra, we have

∆λ = (w11, . . . ,wn1), ∆α = (w12, . . . ,wn2), ∆β = X⊤S,
where S = S(θ) = diag{s1, . . . , sn},

wi1 = wi1(θ) =
1
λ

−
(1 + δi)Φ(−ξi2)

1 − λ̄Φ(−ξi2)
,

wi2 = wi2(θ) =
δi

α


−1 + ξ 2i2 −

ξi2 φ(ξi2)

Φ(−ξi2)
+

λ̄ ξi2 φ(ξi2)

1 − λ̄Φ(−ξi2)


+

1
α


ξi2 φ(ξi2)

Φ(−ξi2)
+

λ̄ ξi2 φ(ξi2)

1 − λ̄Φ(−ξi2)


.

In the response perturbation scheme, each yi is perturbed as yiω = yi + sy ωi, where sy is a scale factor that may be estimated
by the standard deviation of y = (y1, . . . , yn)⊤. We obtain

∆λ = −sys⊤1 , ∆α = −sys⊤2 , ∆β = −sy X⊤M .
Finally, under perturbation on a particular continuous explanatory variable, say xj (j = 1, . . . , p), we follow Thomas and
Cook (1990) and replace xij with xijω = xij + sx ωi, where sx is a scale factor that may be estimated by the standard deviation
of xj. It follows that

∆λ = sxβjs⊤1 , ∆α = sxβjs⊤2 , ∆β = sxβj X⊤M + sx cjs⊤,
where cj denotes a p × 1 vector with 1 at the jth position and zero elsewhere, and βj denotes the jth element of β, for
j = 1, . . . , p.
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Table 1
Descriptive measures of RMDi for non-censored observations and n = 90.

α λ Skewness Kurtosis Q99 Q99.5

0.5 0.5 −0.0323 2.8054 2.5066 2.6638
1.5 −0.0131 2.8083 2.5186 2.6798
3.0 −0.0048 2.8177 2.5297 2.6861
4.0 0.0030 2.8073 2.5360 2.6894

1.0 0.5 −0.0314 2.8032 2.5046 2.6613
1.5 −0.0147 2.7965 2.5182 2.6734
3.0 −0.0042 2.8115 2.5342 2.6901
4.0 0.0006 2.8135 2.5386 2.6962

1.5 0.5 −0.0315 2.7979 2.5047 2.6583
1.5 −0.0131 2.7964 2.5189 2.6783
3.0 −0.0026 2.8094 2.5341 2.6939
4.0 0.0001 2.8166 2.5407 2.6965

4.2. Residual analysis

We initially consider the martingale residual proposed by Barlow and Prentice (1988). In parametric lifetime models,
the martingale residual can be expressed as RMi = δi + log[S(yi;θ)], for i = 1, . . . , n, where S(yi;θ) denotes the survival
function available atθ. For the extended BS regression model defined in (4), we have

RMi = δi + log

 λΦ(−ξi2)
1 −

̄λΦ(−ξi2)

, i = 1, . . . , n,

where̄λ = 1−λ andξi2 = ξi2(θ). Themartingale residuals are skewed, havemaximum value+1 andminimum value−∞.
Due to the skewness distributional form of RMi , transformations to achieve a more normal-shaped form would be

appropriate for residual analysis. For example, the deviance component residual proposed by Therneau et al. (1990) is a
transformation of the martingale residual to attenuate the skewness. It can be expressed in the form

RMDi = sign(RMi)

−2{RMi + δi log(δi − RMi)}

1/2
, i = 1, . . . , n.

This transformationwasmotivated by the deviance component residuals found in generalized linearmodels. As pointed out
by Therneau et al. (1990), the log function inflates the martingale residual close to one, while the square root contracts the
large negative values. Also, this transformation leads to the deviance component residual for the Cox’s proportional hazard
model with no time-dependent variable (Therneau et al., 1990).

We will name RMDi as the martingale-type residual. It seems reasonable to expect that RMDi may work well in residual
analysis similar to those applied in normal linear regression models. However, since the residuals RMDi are in fact neither
independent nor normal, it is usual to adding envelopes as suggested by Atkinson (1981) into the normal probability plots
for RMDi . If λ = 1, then the martingale-type residual proposed in this section reduces to the one proposed by Leiva et al.
(2007).

The empirical distribution of the martingale-type residual RMDi for the LMOEBS regression model was investigated by
using Monte Carlo simulation experiments for different sample sizes, parameter values and censoring proportions; that is,
we conduct a small simulation study to investigate the form of the empirical distribution of the residual RMDi . We consider
the regression model yi = β1 + β2xi + εi, where β1 = β2 = 1 and εi ∼ LMOEBS(λ, α, 0), for i = 1, . . . , n. The covariate
values were selected as random draws from the U(0, 1) distribution and were kept constant throughout the experiment.
The number of Monte Carlo replications was 5000. For each combination of sample sizes, parameter values and censoring
proportions, we compute themean, standard deviation, skewness, kurtosis, quantile 97.5%, quantile 99% and quantile 99.5%
of the empirical distribution of RMDi . To save space, we only show some results of the Monte Carlo experiment for the no
censoring case when n = 90, α = 0.5, 1.5, and λ = 0.5, 1.5, 3.0, 4.0. Table 1 lists the skewness, kurtosis, quantile 99% and
quantile 99.5% of the empirical distribution of RMDi .

In general, from the Monte Carlo simulation experiments, we observe that the martingale-type residual RMDi has
approximately zeromean and unit standard deviation. It has skewness close to zero, which indicates that it is approximately
symmetrical. Also, the kurtosis is near three and the quantiles are close to the quantiles of the standard normal distribution.
It suggests a good agreement of the empirical distribution of RMDi with the standard normal distribution. It should
be mentioned that, as the censoring proportion decreases, the empirical distribution of RMDi approaches faster to the
standard normal distribution. Additionally, as λ increases, the empirical distribution of RMDi becomes less skewed. Finally,
generalizations of these results for more general scenarios is not straightforward, and therefore, as suggested by Atkinson
(1981), the use of normal probability plots for RMDi with envelope is recommended.



42 A.J. Lemonte / Computational Statistics and Data Analysis 64 (2013) 34–50

5. Testing the homogeneity of the shape parameters

In the extended BS regression model introduced in Section 3, the homogeneity of the shape parameters λ and α is a
standard assumption. This assumption, however, is not necessarily appropriate, because the actual shape parameters of the
response variable yi may be related to the ith observation. In this case, the inference would be much difficult to deal with.
Hence, this assumption usually need to be checked. In this section, we consider a LR test statistic to verify the homogeneity
of the shape parameters in the extended BS regression model. This problem has been mentioned by Rieck and Nedelman
(1991) for the BS regression model and investigated by Xie and Wei (2007) and Qu and Xie (2011).

We assume that the homogeneous extended BS regression model (4) takes the form

yi = x⊤

i β + εi, i = 1, . . . , n, (6)

where εi ∼ LMOEBS(λi, αi, 0), λi = λ k1(wi, ρ) and αi = α k2(zi,ψ). The parameters λ and α are the factors of the shape
parameters with weight functions k1(wi, ρ) and k2(zi,ψ), respectively. Also, wi and zi are d1 × 1 and d2 × 1 vectors,
respectively, of nonstochastic variables. Notice that xi, wi and zi may have common components. The parameter vectors
ρ = (ρ1, . . . , ρd1)

⊤ andψ = (ψ1, . . . , ψd2)
⊤ of dimensions d1 and d2, respectively, indicate the heterogeneity of the shape

parameters. Under the regression model (6), the log-likelihood function for the parameter vector θ = (λ, α, ρ⊤,ψ⊤,β⊤)⊤

can be expressed, apart from an unimportant constant, in the form

ℓ(θ) = n log(λ)+

n
i=1

log[k1(wi, ρ)] +

n
i=1

log


Φ(−ξ ∗

i2)

1 − λ̄iΦ(−ξ
∗

i2)



+

n
i=1

δi

log(ξ ∗

i1)− (1/2)ξ ∗2
i2 − log[Φ(−ξ ∗

i2)] − log[1 − λ̄iΦ(−ξ
∗

i2)]

, (7)

where λ̄i = 1 − λ k1(wi, ρ),

ξ ∗

i1 = ξ ∗

i1(θ) =
2
αi

cosh

yi − µi

2


, ξ ∗

i2 = ξ ∗

i2(θ) =
2
αi

sinh

yi − µi

2


,

with µi = x⊤

i β, for i = 1, . . . , n.
The test of homogeneity of the shape parameters lies in testing the null hypothesis H0 : (ρ,ψ) = (ρ0,ψ0) against

Ha : (ρ,ψ) ≠ (ρ0,ψ0), where ρ0 and ψ0 are vectors of known scalars. It is assumed that there is a unique value of
ρ0 and ψ0 such that k1(wi, ρ0) = 1 and k2(zi,ψ0) = 1. Letθ = (λ,α,ρ⊤,ψ⊤

,β⊤

)⊤ andθ = (λ,α, ρ⊤

0 ,ψ
⊤

0 ,
β⊤

)⊤

be the unrestricted and restricted (obtained from the maximization of (7) under H0) maximum likelihood estimators of
θ = (λ, α, ρ⊤,ψ⊤,β⊤)⊤, respectively. Here, λ, α and β act as nuisance parameters. The LR statistic for testing H0 is given

by Υ = 2{ℓ(θ) − ℓ(θ)}. Under the usual regularity conditions and under H0, Υ
D

→χ2
d1+d2

, where
D

→ denotes convergence
in distribution, so that a test can be performed using approximate critical values from the asymptotic χ2

d1+d2
distribution.

After some algebra, we can write

Υ = 2 n log
λλ


+ 2

n
i=1

log


k1(wi,ρ)
k1(wi, ρ0)


+ 2

n
i=1

log


Φ(−ξ ∗

i2)[1 −
̄λiΦ(−ξ ∗

i2)]

Φ(−ξ ∗

i2)[1 −
̄λiΦ(−ξ ∗

i2)]



+ 2
n

i=1

δi


log

ξ ∗

i1ξ ∗

i1


−

1
2

ξ ∗2
i2 −ξ ∗2

i2


− log


Φ(−ξ ∗

i2)

Φ(−ξ ∗

i2)


− log


1 −

̄λiΦ(−ξ ∗

i2)

1 −
̄λiΦ(−ξ ∗

i2)


,

where̄λi = 1−λ k1(wi,ρ),̄λi = 1−λ k1(wi, ρ0),ξ ∗

i1 = ξ ∗

i1(
θ),ξ ∗

i2 = ξ ∗

i2(
θ),ξ ∗

i1 = ξ ∗

i1(
θ) andξ ∗

i2 = ξ ∗

i2(
θ). The null hypothesis

is rejected if the observed value of Υ exceeds the upper 100(1 − γ )% quantile of the χ2
d1+d2

distribution.
In practical applications, explicit forms for k1(wi, ρ) and k2(zi,ψ) need to be provided. As suggested by Cook and

Weisberg (1982), the exponential function is usually employed in practice. For example, we can assume k1(wi, ρ) =

exp(w⊤

i ρ) and k2(zi,ψ) = exp(ψ⊤zi). Note that ρ = 0 and ψ = 0 imply k1(wi, ρ) = k2(zi,ψ) = 1, and therefore,
λi = λ and αi = α for all i = 1, . . . , n.

6. Real data illustrations

In this section, we use two real data sets to show the flexibility and applicability of the extended BS regression model
in practice. We will consider real data with and without censoring. All the computations presented in this section were
done using the Ox matrix programming language (Doornik, 2009), which is freely distributed for academic purposes and
available at http://www.doornik.com. The Broyden–Fletcher–Goldfarb–Shanno (BFGS) method with analytical derivatives
through the subroutine maxBFGS has been used for maximizing the log-likelihood function.

http://www.doornik.com
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Table 2
Maximum likelihood estimates; first data set.

Parameter LBS model LMOEBS model
Estimate SE Estimate SE

β1 0.0978 0.1707 −0.7899 0.4317
β2 −14.1164 1.5714 −14.4809 1.3242
α 1.2791 0.1438 1.4249 0.2505
λ 4.9578 2.7537

Table 3
AIC, BIC and HQIC for the fitted models; first data set.

Criterion Model
LBS LMOEBS

AIC 55.72 49.16
BIC 60.79 55.92
HQIC 57.55 51.60

Fig. 3. First data set: (a) martingale-type residuals against the fitted values; (b) normal probability plot with envelope.

First, we consider the real data provided by McCool (1980) and recently analyzed in Chan et al. (2008) by using an
extreme-value regression model. These data consist of times to failure (T ) in rolling contact fatigue of ten hardened steel
specimens tested at each of four values of four contact stress (x2). The data were obtained using a 4-ball rolling contact test
rig at the Princeton Laboratories of Mobil Research and Development Co. It should be noticed that the fatigue processes are
by excellence ideally modeled by the BS distribution due to its genesis. So, based on this argument, wewill use the extended
BS regression model for analyzing these data. We follow Chan et al. (2008) and consider the regression model

yi = β1xi1 + β2 log(xi2)+ εi, i = 1, . . . , 40, (8)

where yi is the logarithm of the failure time, xi1 = 1 and the εi’s are independent and identically distributed such that
εi ∼ LMOEBS(λ, α, 0).

Table 2 lists the maximum likelihood estimates of the model parameters and the asymptotic standard errors (SE) for
the extended BS and BS regression models. To compare these regression models, we consider selection criteria on the
candidatemodels (see Table 3). According to the AIC (Akaike Information Criterion), BIC (Bayesian Information Criterion) and
HQIC (Hannan–Quinn Information Criterion) criteria, the new extended BS regression model outperforms the BS regression
model and therefore should be preferred. Additionally, the observed value of the LR statistic for testing the null hypothesis
H0 : λ = 1 against Ha : λ ≠ 1, isΛ = 8.56 (p-value = 0.0034). So, the null hypothesis H0 : λ = 1 is strongly rejected at
any usual significance level. Therefore, we select the extended BS regression model as our working model.

In order to detect possible departures from the assumption of LMOEBS errors in the model (8) as well as outlying
observations, we present in Fig. 3(a) the martingale-type residuals RMDi against the fitted values and the corresponding
normal probability plot with generated envelopes for RMDi in Fig. 3(b). Fig. 3(a) indicates a large positive residual (case #21),
whereas Fig. 3(b) reveals that the assumption of LMOEBS error seems to be suitable, since there are no observations falling
outside the envelope. The observation #21 was highlighted by Fig. 3(a). This case corresponds to the smallest value of the
time to failure. In Fig. 4 we present the index plots of the absolute value of dmax (that is, |dmax|) for (λ,α,β),β and (λ,α)
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Fig. 4. Index plots of |dmax|: case-weight perturbation for (λ,α,β) (a),β (b) and (λ,α) (c); response perturbation for (λ,α,β) (d),β (e) and (λ,α) (f);
first data set.

under the perturbation scheme indicated. Note that the observation #21 appears as the most influential in all the graphs.
Therefore, the diagnostic analysis detected as potentially influential on the parameter estimates the case #21.

In order to reveal the impact of the observation #21 on the parameter estimates, Table 4 shows the absolute changes (AC)
in the parameter estimates after dropping the case #21 from the real data set. We also present the corresponding p-values
(in parentheses) for the new estimates in this table. The AC of each estimate is defined as ACθj = |θj −θj(I)|, whereθj(I)
denotes the maximum likelihood estimate of θj, with j = 1, . . . , k (where k is the total number of parameters), after the set
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Table 4
AC and the corresponding p-values in parentheses; first data set.

Estimated parameter Dropped observation
None #21β1 – 1.711
(0.067) (0.028)β2 – 3.414
(0.000) (0.000)λ – 4.677α – 0.465

Table 5
Maximum likelihood estimates; second data set.

Parameter LBS model LMOEBS model
Estimate SE Estimate SE

β1 1.1417 0.6375 0.9004 0.6084
β2 0.0405 0.0050 0.0317 0.0053
β3 −0.0027 0.0086 0.0004 0.0080
β4 0.0218 0.0080 0.0125 0.0084
β5 −0.0021 0.0227 −0.0001 0.0212
β6 −0.2800 0.3032 0.3629 0.2717
β7 −0.7053 0.3009 −0.4101 0.2451
β8 −0.6909 0.3667 −0.6902 0.2707
β9 −0.3831 0.1926 −0.3407 0.1829
α 1.2619 0.0792 1.4334 0.1650
λ 4.1969 1.7436

I of observations has been removed. The figures in Table 4 reveal that the significance of the parameters β1 and β2 are not
modified when the observation #21 is removed from the data set, that is, the case #21 does not change the significance of
these parameters in the regression model (8). Therefore, the LMOEBS regression model is suitable to model these real data.

Next, as a second application, we shall consider the lung cancer data presented by Kalbfleisch and Prentice (2002, p. 378).
In this trial, males with advanced inoperable lung cancer were randomized to either standard or test chemotherapy. Only
9 of the 137 survival times were censored. The variables considered in this study are: the survival time (T , in days) of the
patients with lung cancer; a measure, at randomization, of the patient’s performance status (Karnofsky rating) (x2), where
10–30 is completely hospitalized, 40–60 is partial confinement and 70–90 is able to take care of self; time in months from
diagnosis to randomization (x3); age in years (x4); prior therapy (x5), a dichotomous variable taking the value 10 for yes and
0 for no; histological type of tumor, which has the categories squamous, small cell, adeno and large cell, making necessary
the use of dummy variables given by x6 = 1, x7 = 1 and x8 = 1 if the type of cancer cell is squamous, small and adeno,
respectively, and 0 otherwise; type of treatment (x9),which takes the value 0 for standard chemotherapy and 1 for test
chemotherapy. One of the objectives of this study was to explain the survival time T by using a regression model with the
explanatory variables described above.

Lee andWang (2003) applied variousmodels to fit this data setwith different error distributions, such as the exponential,
generalized gamma, log–logistic, log-normal and Weibull. More recently, Barros et al. (2008) considered these data in the
BS context. According to these authors, an argument for the use of the BS distribution is the possibility of relating the
propagation lifetimes that lead to a fatigue process with some cumulative damage. On the basis of the same argument,
we will use the extended BS regression model for analyzing these data.

Firstly, we consider the following regression model:

yi = β1xi1 + β2xi2 + · · · + β9xi9 + εi, i = 1, . . . , 137, (9)

where yi is the logarithm of the survival or censoring time, xi1 = 1 and the εi’s are independent and identically distributed
such that εi ∼ LMOEBS(λ, α, 0). Table 5 lists themaximum likelihood estimates of themodel parameters and the asymptotic
SE for the extended BS and BS regressionmodels. The AIC, BIC and HQIC criteria for both themodels are presented in Table 6.
From this table, it is evident that the new extended BS regression model outperforms the BS regression model irrespective
of the criteria and therefore should be preferred. Additionally, the observed value of the LR statistic for testing the null
hypothesis H0 : λ = 1 against Ha : λ ≠ 1 is in accordance with the information criteria, that is, we obtain Λ = 7.96 and
the associated critical point of the χ2

1 distribution at the 5% significance level, for instance, is 3.84, which yields a p-value of
less than 0.005. It implies that the null hypothesis H0 : λ = 1 is strongly rejected at any usual significance level. Therefore,
we select the extended BS regression model as our working model. We note that the predictors x3, x4, x5 and x6 are not
marginally significant at the level of 10% in model (9).

In order to detect possible departures from the assumption of LMOEBS errors in the model (9) as well as outlying
observations, we present in Fig. 5(a) the martingale-type residuals RMDi against the fitted values and the corresponding
normal probability plot with generated envelopes for RMDi in Fig. 5(b). Fig. 5(a) reveals two large positive residuals (patients
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Table 6
AIC, BIC and HQIC for the fitted models; second data set.

Criterion Model
LBS LMOEBS

AIC 189.39 183.45
BIC 218.59 215.57
HQIC 201.26 196.50

Fig. 5. Second data set: (a) martingale-type residuals against the fitted values; (b) normal probability plot with envelope.

#77 and #85) and a large negative residual (patient #44). Fig. 5(b) indicates that the assumption of LMOEBS error seems to
be suitable, since there are no observations falling outside the envelope. As can be observed, Fig. 5(a) highlights strongly the
observation#85. It corresponds to a patientwhohadwaited for 7months until randomization. Also, he did not have anyprior
therapy and his performance was partial confinement. He received the test chemotherapy treatment and his histological
tumor type was squamous. He corresponds to a 35-year-old patient whose survival time was one day. The case #85 is the
youngest patient with survival time less than 4 days. As we will see in the following, the patients #44, #77 and #85 appear
as potentially influential on the parameter estimates.

Fig. 6 shows the index plots of |dmax| for (λ,α,β),β and (λ,α) under the perturbation scheme indicated. From this figure,
notice that the observations #44 and #85 appear as the most influential in all the graphs. Other observations also appear
with some outstanding influence on the parameter estimates. For example, observations #17 and #77 appear as possible
influential on (λ,α,β) and onβ under the perturbation scheme indicated. Therefore, the diagnostic analysis detected as
potentially influential the following four cases: #17, #44, #77 and #85.

In order to reveal the impact of these four observations (cases #17, #44, #77 and#85) on the parameter estimates, Table 7
shows the AC in the estimates after dropping one of the four cases with outstanding influence and also when all of them are
dropped at once (represented by the setA = {17, 44, 77, 85}).We also present the corresponding p-values (in parentheses)
for the new estimates in this table. From the figures in Table 7, note that observations #17 and #77 are highly influential for
the estimate of β4; indeed, the age in years becomes significant at the 5% and 10% nominal levels when these observations
are not in the data, respectively. Observation #44 is highly influential for the estimate of β6, which makes this parameter
significant at the 10% nominal level when this observation is not in the data. Additionally, looking at Table 7, we can notice
that the elimination of observations #44, #85 and the set A make the explanatory variable x9 (type of treatment) non-
significant; that is, the significance of this variable in the extended BS regression model was masked by these observations,
so it should be removed from themodel. Finally, Table 7 reveals that the highest values of the AC correspond to the estimate
of the shape parameter λ.

Therefore, on the basis of the above analysis, the survival time (in days) of the patients with lung cancer depends on the
performance status and on the histological type of tumor, that is, the final selected model takes the form

yi = β1xi1 + β2xi2 + β6xi6 + β7xi7 + β8xi8 + εi, i = 1, . . . , 137, (10)

where xi1 = 1 and εi ∼ LMOEBS(λ, α, 0). The maximum likelihood estimates of the parameters (estimated SE in parenthe-
sis) are:λ = 5.0287 (1.7232),α = 1.5573 (0.1771),β1 = 1.4423 (0.3977),β2 = 0.0288 (0.0048),β6 = 0.2858 (0.2517),β7 = −0.3541 (0.2409) andβ8 = −0.7820 (0.2527). From these final estimates, note that there is no significant difference
(at the 10% nominal level) among the squamous, small and large types of tumors, whereas there is significant difference
(at the 1% nominal level) between the adeno and large types of tumors. We may interpret the estimated coefficients of the



A.J. Lemonte / Computational Statistics and Data Analysis 64 (2013) 34–50 47

Fig. 6. Index plots of |dmax|: case-weight perturbation for (λ,α,β) (a),β (b) and (λ,α) (c); response perturbation for (λ,α,β) (d),β (e) and (λ,α) (f);
second data set.

final model (10) as the following. The expected survival time should increase with the performance status and no signifi-
cance appears among the squamous, small and large types of tumors. On the other hand, assuming that the performance
status is fixed, the survival time is expected to decrease 119% for the adeno tumor type with respect to the large one.

Now, we shall verify if the assumption of homogeneity of the shape parameters in the regression models (8) and (10) are
appropriate to model the first and second real data sets, respectively. For the regression model (8), we assume k1(wi, ρ) =

exp(ρ log(xi2)) and k2(zi,ψ) = exp(ψ log(xi2)). Additionally, we assume k1(wi, ρ) = exp(ρ xi2) and k2(zi,ψ) = exp(ψ xi2)
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Table 7
AC and the corresponding p-values in parentheses; second data set.

Estimated parameter Dropped observation
None #17 #44 #77 #85 Set Aβ1 – 0.311 0.002 0.091 1.031 0.829
(0.140) (0.324) (0.125) (0.094) (0.006) (0.006)β2 – 0.001 0.001 0.001 0.002 0.002
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)β3 – 0.001 0.004 0.000 0.002 0.001
(0.963) (0.866) (0.560) (0.989) (0.833) (0.867)β4 – 0.004 0.006 0.002 0.008 0.005
(0.137) (0.037) (0.451) (0.077) (0.562) (0.299)β5 – 0.004 0.001 0.007 0.020 0.002
(0.995) (0.854) (0.965) (0.766) (0.358) (0.920)β6 – 0.033 0.057 0.007 0.158 0.049
(0.182) (0.128) (0.083) (0.198) (0.514) (0.216)β7 – 0.142 0.146 0.038 0.104 0.351
(0.094) (0.019) (0.011) (0.068) (0.067) (0.001)β8 – 0.027 0.005 0.013 0.067 0.108
(0.011) (0.005) (0.005) (0.009) (0.013) (0.002)β9 – 0.031 0.112 0.004 0.122 0.276
(0.062) (0.072) (0.175) (0.060) (0.230) (0.685)λ – 0.861 2.168 0.475 2.176 1.297α – 0.021 0.095 0.088 0.253 0.362

for the regression model (10). Note that ρ = 0 and ψ = 0 imply k1(wi, ρ) = k2(zi,ψ) = 1, and therefore, λi = λ and
αi = α (i = 1, . . . , n) for both the regressionmodels. Hence, the test for the homogeneity of the shape parameters becomes
the test of the null hypothesis H0 : (ρ, ψ) = (0, 0) against the alternative hypothesis Ha : (ρ, ψ) ≠ (0, 0). By a little
computation, we have that the LR test statistics are Υ = 7.059 (p-value = 0.029) and Υ = 12.297 (p-value = 0.002)
for the regression models (8) and (10), respectively. Therefore, we reject the null hypothesis H0 : (ρ, ψ) = (0, 0) at the
5% nominal level for the both regression models and the assumption of homogeneity of the shape parameters seems not
suitable for the first real data as well as for the second real data.

Finally, it should be mentioned that the lung cancer data (i.e. second data set) have also been analyzed in Li and Xie
(2012). They showed that the assumption of homogeneity for the shape parameter of the BS Student-t regression model is
not suitable for these data by using a score test statistic. Therefore, on the basis of the above discussions, it is evident that
a heterogeneous extended BS regression model needs to be introduced and of course deserve a separate paper. This model
will be a generalization of the proposed extended BS regression model and the inference in this case is much more difficult
to deal with. Future research regarding a heterogeneous extended BS regressionmodel will be discussed in a separate paper
elsewhere.

7. Concluding remarks

The BS distribution has many attractive properties and has found several applications in the literature including
lifetime, survival and environmental data analysis. It has received significant attention over the last few years and some
generalizations and extensions of this distribution have been proposed by many researchers. Based on the BS distribution,
Rieck andNedelman (1991) introduced the BS regressionmodel, which has been studied by several authors. Their regression
model is becoming increasingly popular to model times to failure for materials subject to fatigue and for modeling lifetime
data. In this paper, we proposed a new class of extended BS regression models on the basis of the extended BS distribution
introduced by Lemonte (2013), which generalizes the BS regression model in Rieck and Nedelman (1991) and in Leiva et al.
(2007). The new class of regression models can serve as a good alternative for lifetime data analysis and it is much more
flexible than the usual BS regressionmodel in analyzing lifetime data inmany practical situations. The parameter estimation
of the new regression model is approached by maximum likelihood and the observed information matrix is derived. We
discuss diagnostic techniques in the extended BS regression model. Diagnostic methods have been an important tool in
regression analysis to detect anomalies with the fitted model, such as departures from the error assumptions, presence
of outliers and presence of influential observations. In particular, appropriate matrices for assessing local influence on the
parameter estimates under different perturbation schemes are obtained, which are quite simple, compact and can be easily
implemented into any mathematical or statistical/econometric programming environment with numerical linear algebra
facilities. We investigate a test of homogeneity of the shape parameters in the extended BS regression model based on the
likelihood ratio statistic. Two applications to real data sets are presented to show that the new extended BS regressionmodel
provides a better fit than the usual BS regression model. It illustrates the fact that there is still room for improving the usual
BS regression model. We hope that the proposed regression model may attract wider applications in survival analysis and
fatigue life modeling.
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