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SUMMARY

Randomized clinical trials with long-term survival data comparing two treatments often show
Kaplan–Meier plots with crossing survival curves. Such behaviour implies a violation of the proportional
hazards assumption for treatment. The Cox proportional hazards regression model with treatment as a
�xed e�ect can therefore not be used to assess the in�uence of treatment of survival. In this paper we
analyse long-term follow-up data from the Dutch Gastric Cancer Trial, a randomized study comparing
limited (D1) lymph node dissection with extended (D2) lymph node dissection. We illustrate a number
of ways of dealing with survival data that do not obey the proportional hazards assumption, each of
which can be easily implemented in standard statistical packages. Copyright ? 2005 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

Many randomized clinical trials in oncology concern long-term survival data, comparing an
experimental treatment with a standard treatment or control. To test for equality of the survival
rates of the treatments, the log-rank test is used [1]. Often in these trials, characteristics of
the patient and of the tumour that are known before treatment are also recorded. The Cox
proportional hazards regression model is the most popular choice to study the e�ect of those
prognostic factors on survival [2]. One of the assumptions underlying the Cox regression
model is the assumption of proportional hazards, meaning that the ratio of the hazard rates
for di�erent levels of the prognostic factor or for treatment versus control is constant over

∗Correspondence to: Hein Putter, Department of Medical Statistics and Bioinformatics, Leiden University Medical
Centre, University of Leiden, P.O. Box 9604, Leiden, 2300 RC, The Netherlands.

†E-mail: h.putter@lumc.nl

Received 3 June 2004
Copyright ? 2005 John Wiley & Sons, Ltd. Accepted 9 December 2004



2808 H. PUTTER ET AL.

time. This ratio can then be expressed as a single number, the hazard ratio or relative risk of
treatment over control, or of one level of a prognostic factor over another. Although not as
implicitly assumed as in the Cox regression model, the validity of the log-rank test is also
sensitive to the assumption that the hazard rates for di�erent levels of the prognostic factor or
for treatment versus control do not change appreciably over time [3]. When studying survival
data over a short period of time, the proportional hazards assumption is often a reasonable
one. In clinical trials with long-term follow-up however it often happens that the Kaplan–
Meier survival curves cross. In the beginning of the study for instance, the experimental
treatment may yield better survival, but this e�ect may be reversed after some time. Under
the proportional hazards assumption, crossing of the survival curves is impossible. Thus, in
a study where the patient groups do not di�er between the treatments, a crossing of the
survival curves implies a violation of the proportional hazards assumption. In such a case,
the log-rank test for the di�erence in survival rates between the treatments will most likely
not be signi�cant, because of the contrasting early and late e�ects of the treatments. If the
proportional hazards assumption fails to hold for the treatment or for one or more of the
covariates, the results of a multivariate Cox regression will be misleading. The hazard ratio
for the particular covariate cannot be interpreted as a hazard ratio or relative risk; moreover,
the regression coe�cients of the other covariates (including the treatment) may be biased as
a result [4].
The aim of this paper is to illustrate a number of ways of dealing with long-term follow-up

data which do not obey the proportional hazards assumption. We shall do this using the Dutch
Gastric Cancer Trial as an example. Section 2 will discuss the background of this trial and
describe the most important characteristics of the patients involved. Section 3 will focus on
the e�ect of treatment without considering any covariates; the issue of how to deal covariates
is studied in Section 4. We conclude in Section 5 with a discussion of the results and the
methods and of possible other approaches.

2. THE DUTCH GASTRIC CANCER TRIAL

The data reported here are from the Dutch Gastric Cancer Trial, a prospective, randomized
clinical trial, comparing limited (D1) lymph node dissection with extended (D2) lymph node
dissection in patients with gastric cancer.
Eligibility criteria were histologically con�rmed adenocarcinoma of the stomach without

evidence of distant metastasis, and age below 85 years. Exclusion criteria were coexisting
cancer or previous gastrectomy for benign tumours. Results of the trial have been presented
elsewhere [5]. We limit our analysis to the 711 eligible patients who underwent a curative
dissection, 380 of which had a D1-dissection and 331 a D2-dissection. The median follow-up
of the patients in the analysis is 9.1 years. The baseline characteristics of the patients are
summarized in Table I. Prognostic variables studied in this analysis are gender, lymph node
involvement, age, residual tumour, resection type, tumour location and T-stage. Although
T-stage was originally recorded in 5 categories, T-stage 0 up to 4, in view of the small
sample sizes for T-stages 0 and 4, we have recoded T-stage 0 into T-stage 1 and T-stage 4 into
T-stage 3. Patient groups were comparable between D1- and D2-dissection, with the exception
of resection type.
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Table I. Patient characteristics.

D1 D2

(n=380) (n=331) p-value

Gender 0.92
Male 215 (57) 186 (56)
Female 165 (43) 246 (44)

Age 0.30
6 65 years 178 (47) 168 (51)
¿65 years 202 (53) 163 (49)

T-stage 0.83
T1 100 (26) 88 (27)
T2 181 (48) 152 (46)
T3 97 (26) 91 (27)
Unknown 2 0

Type of resection 0.03
Total 115 (30) 126 (38)
Partial 265 (70) 205 (62)

Tumour location 0.99
CMA 37 (10) 32 (10)
C 40 (10) 34 (10)
M or A 303 (80) 265 (80)

Residual tumour 0.71
R0 340 (89) 299 (90)
R1 40 (11) 32 (10)

Lymph node involvement 0.70
Negative 171 (45) 144 (44)
Positive 209 (55) 187 (56)

An earlier report of this trial showed a higher postoperative mortality of D2-dissection
compared to D1-dissection [6]. The Kaplan–Meier survival curves of D1- and D2-dissection
crossed after about 4 years. No signi�cant di�erence in survival was found between the
D1-group and the D2-group with a median follow-up of 6 years. However, this is most
probably due to the initially unfavourable and subsequently advantageous e�ect of D2 over
D1 cancelling out. Results of a (multivariate) Cox regression were presented in this paper as
well as in a subsequent paper describing the long-term results of the trial [7], although the
violation of the proportional hazards assumption was noted.

3. TREATMENT EFFECT IN NON-PROPORTIONAL HAZARDS

The primary endpoint is overall survival in months, starting from the day of surgery. Figure 1
shows a Kaplan–Meier plot of the survival curves for each of the treatment groups. It shows
an initial survival advantage of D1 over D2 in the �rst 53 months, followed by a disadvantage.
The p-value of the log-rank test is 0.71, suggesting no di�erence between the D1- and D2-
groups.

Copyright ? 2005 John Wiley & Sons, Ltd. Statist. Med. 2005; 24:2807–2821
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Figure 1. Kaplan–Meier plots of the survival curves for D1- and D2-dissection. The
survival curves cross after 53 months.

The Cox regression with only randomization as a time-�xed e�ect gives an estimated hazard
ratio of 0.97 of D2 dissection compared to D1-dissection, with a p-value of 0.73. The survival
curves resulting from this univariate Cox regression are depicted in Figure 2. The higher
post-operative mortality in the D2 group is not visible from this plot, nor is the crossing
of the survival curves, so clearly Figure 2 does not give a realistic picture of the e�ect of
treatment.
One way of studying how the e�ect of treatment changes over time is by using the life-

table method. This method was used by epidemiologists long before the Cox regression model
became popular. Divide time into a number of disjoint intervals I1; : : : ; Im. The hazard hk of
dying in interval Ik is then given by the number of deaths in that interval (dk) divided by
the number of person years in that interval (yk). The number of person years is the sum over
all patients still alive at the beginning of the interval (at risk) of the number of years alive
during that interval. The standard error of hk , based on a Poisson approximation, is

√
dk=yk .

If hk1 and hk2 denote the estimated hazards at Ik for D1 and D2, respectively, and dk1 and
dk2 the number of deaths at Ik for D1 and D2, respectively, then the delta-method implies
that

ŝe2 log
(
hk1
hk2

)
≈ ŝe

2(hk1)
h2k1

+
ŝe2(hk2)
h2k2

=
1
dk1

+
1
dk2

The left plot of Figure 3 shows the estimated hazards on a yearly basis using the life-table
method for each of the treatment groups separately. The plot on the right shows the resulting
hazard ratio and associated error bars. The initial advantage and subsequent disadvantage of
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Figure 2. Cox regression plots of the survival curves for D1- and D2-dissection
with time-�xed treatment e�ect.
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Figure 3. Yearly hazard estimates estimated by the life-table method, and the associated hazard ratios
with 95 per cent-con�dence intervals.
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Table II. Results from Cox regression including treatment
and time by treatment interaction. The correlation between

the estimated coe�cients was −0:93.
Coe�cient Standard error p-value

Treatment 0.760 0.261 0.0036
Time ∗ treatment −0:273 0.084 0.0011

D1- compared to D2-dissection can be seen from this plot. Note also that the con�dence
intervals tend to become wider with time due to the decreasing number of events.
The evolvement of the hazard ratios over time can be modelled in a smooth way us-

ing standard statistical software by adding a time-dependent covariate in a Cox proportional
hazards model. The most straightforward way to do this is by adding interaction terms of the
treatment group and the prognostic variables with f(t), where f is a given function of time,
and t is time since surgery (in months in this case). A popular choice is log(t); we prefer
to take log(t + 1) and add an extra month to diminish the in�uence of very early events on
the time-dependent variables. In the results we refer to this as ‘time’. A signi�cant e�ect of
that interaction denotes the presence of a time-dependent e�ect and thus a violation of the
proportional hazards assumption. The results of this time-dependent Cox regression applied to
the data of the Dutch Gastric Cancer Trial are shown in Table II.
The time by treatment interaction now gives a hazard ratio of D2 over D1 which will

vary over time, following the function exp(a + b log(t + 1)), with a and b the estimated
coe�cients of treatment and treatment by time interaction in Table II. At time t=0, the
hazard ratio equals exp(a)= exp(0:760)=2:14 (the fact that the hazard ratio at t=0 depends
only on a is an additional advantage of taking f(t)= log(t + 1) as our function of time),
after 5 years (t=60) it has decreased to exp(0:760 − 0:273 ∗ log(61))=0:69. The log of
the time-dependent hazard ratio (HR) of D2 over D1 is a + b log(t + 1) and its standard
error se(log(HR)) is the square root of var(a) + var(b) ∗ log2(t +1)+ 2 cov(a; b) ∗ log(t +1).
A pointwise 95 per cent-con�dence interval can thus be obtained by taking the exponent of
log(HR)±1:96∗se(log(HR)). Figure 4 shows the resulting hazard ratio of D2 over D1 and the
con�dence interval for each time-point. A hazard ratio of one indicates equality of the hazard
rates of D1 and D2. The hazard ratio of D2 over D1 decreases over time; it is signi�cantly
higher than one until 5 months after surgery, and signi�cantly lower than one after 35 months.
A number of comments are in order. The previous analysis, although relatively easy to

perform with standard statistical software, has the disadvantage that one has to choose a form
of how the e�ect of treatment will change over time. Here we chose log(t+1), the logarithm
of time in months (plus 1). Other choices such as t,

√
t are also possible, but such a choice

is always arbitrary to some degree. A picture of the hazard ratio over time as in Figure 4 will
always have the form that was imposed upon it, not necessarily the true e�ect evolving over
time. Detecting the presence of a time-dependent e�ect may depend on the choice of f(t),
even the direction that this e�ect will take [8]. A plot like Figure 3 or the function cox.zph()
in S-plus (see Chapter 6 in Reference [9]) can guide in choosing an appropriate function.
The evolvement over time of the hazard ratio is an important summary of a time-dependent

treatment e�ect, but does not tell the full story. The baseline hazard function is crucial for
determining the e�ect of the hazard ratio on the two survival curves. Before showing why,
let us discuss estimation of this baseline hazard function.

Copyright ? 2005 John Wiley & Sons, Ltd. Statist. Med. 2005; 24:2807–2821
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Figure 4. The estimated hazard ratio with 95 per cent con�dence intervals based
on Cox regression with treatment as time-dependent e�ect. A hazard ratio of one

indicates equality of the hazard rates of D1 and D2.

Standard statistical packages like SPSS, SAS and S-plus are able to perform Cox regression
with time-dependent covariates (although for S-plus and R the original data needs to be
expanded), but most of them do not return the baseline hazard functions automatically in the
presence of time-dependent covariates. The survival library in S-plus and R contains a function
basehaz() to obtain an estimate of the baseline hazard. To show how this is done, we focus
on the situation of a single covariate Z given by two values, 0 and 1. The time-dependent
treatment e�ect is modelled by a function f(t). The Cox proportional hazards model states
that the hazard rate of an individual with covariate Z is given by

h(t)= h0(t) exp(�FZ + �TZf(t)) (1)

where �F and �T denote the �xed and time-dependent regression coe�cients, respectively.
Here h0 is the baseline hazard corresponding to Z =0, and if we denote the hazard function
corresponding to Z =1 by h1, then this means that h1(t)= h0(t) exp(�F+�Tf(t)) and exp(�F+
�Tf(t)) is the hazard ratio varying over time. The regression coe�cients are estimated by an
extension of the well known partial likelihood (see e.g. Section 9.2 of Klein and Moeschberger
[3]). With estimated regression coe�cients �̂F and �̂T obtained in this way, the baseline
cumulative hazard rate H0(t) is estimated by Breslow’s estimator, given by

Ĥ 0(t)=
∑

ti6t; ti∈D

1∑
j∈R(ti) exp(�̂FZj + �̂TZjf(tj))

(2)

Copyright ? 2005 John Wiley & Sons, Ltd. Statist. Med. 2005; 24:2807–2821
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Figure 5. Cox regression plots of the survival curves for D1- and D2-dissection with time-dependent
treatment e�ect. The survival curves cross after 47.6 months, with survival probability 0.548.

where D is the set of all event time-points and R(ti) is the risk-set at time ti, consisting
of all patients still alive at ti. In the case of two treatments, the other hazard function is
estimated by

Ĥ 1(t)=
∑

ti6t; ti∈D

exp(�̂F + �̂Tf(ti))∑
j∈R(ti) exp(�̂FZj + �̂TZjf(tj))

and the cumulative survival functions are given by Ŝj(t)= exp(−Ĥ j(t)), for j=0; 1.
Figure 5 shows the survival curves that result from this procedure for the data of the Dutch

Gastric Cancer Trial. The survival curves are in reasonable agreement with the Kaplan–Meier
plot.
Why does the baseline hazard function in�uence the e�ect of the hazard ratio on the two

survival curves in the presence of time-dependent covariates? Essentially, this is caused by
the fact that the hazard at any time-point is a conditional probability of an event, given that
it has not occurred yet. Thus, it concerns only subjects that are still at risk at that time-point.
Consider the Dutch Gastric Cancer Trial, where the hazard ratio of D2 relative to D1 is
initially larger than one, then below one. If the baseline risk is very high initially, most of
the patients will have died before the hazard ratio becomes less than one and the e�ect of the
subsequent lower hazard rate for the D2 group will be negligible. Conversely, if the baseline
risk is very low, most of the patients will die after the hazard rates have crossed, so the

Copyright ? 2005 John Wiley & Sons, Ltd. Statist. Med. 2005; 24:2807–2821



LONG-TERM SURVIVAL WITH NON-PROPORTIONAL HAZARDS 2815

D1
D2

D1
D2

D1
D2

D1
D2

alpha = 0.6

Months since surgery

0 24 48 72 96 120

S
ur

vi
va

l

0.0

0.2

0.4

0.6

0.8

1.0

alpha = 0.75

Months since surgery

0 24 48 72 96 120

S
ur

vi
va

l

0.0

0.2

0.4

0.6

0.8

1.0

alpha = 1.25

Months since surgery

0 24 48 72 96 120

S
ur

vi
va

l

0.0

0.2

0.4

0.6

0.8

1.0

alpha = 1.5

Months since surgery

0 24 48 72 96 120

S
ur

vi
va

l

0.0

0.2

0.4

0.6

0.8

1.0

Figure 6. Cox regression plots for the Dutch Gastric Cancer Trial, using the estimated coe�cients of
Table II. The estimated baseline hazard of Figure 5 has been modi�ed as in equation (3) with shape

parameters 0.6, 0.75, 1.25 and 1.5, respectively.

treatment e�ect will be dominated by the higher hazard rate of D1 later in time. To illustrate
this point, we modi�ed the baseline cumulative hazard estimator of the D1-group Ĥ 0(t) of
equation (2) by adjusting a shape parameter similar to that of the Weibull distribution, while
ensuring that the baseline survival probability at 60 months remained identically equal to
0.497. More speci�cally, with H0 = Ĥ 0(60)=0:699 the baseline cumulative hazard estimate
at 60 months, for a given shape parameter �¿0, we set

H̃0(t)=H0

(
Ĥ0(t)
H0

)�
(3)

Clearly, �=1 returns Ĥ 0(t); for �¡1, this has the e�ect of making the modi�ed baseline
cumulative hazard increase more rapidly for t¡60 and less rapidly for t¿60. For �¿1, the
e�ect is reversed. The estimates from Table II were then used to construct the survival curve
of the D2-group using equation (1). The result is shown in Figure 6, for �=0:6; 0:75; 1; 25; 1:5.
The survival curves cross at t=126; 85; 36; 29 with survival probabilities 0:394; 0:453; 0:637;
0:717, respectively. With the same regression coe�cients of treatment and treatment by time
interaction, the �rst plot would clearly favour D1-dissection, while the last plot would favour
D2-dissection.
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4. PROGNOSTIC FACTORS AND NON-PROPORTIONAL HAZARDS

The Cox regression presented in Section 3 incorporated a time-dependent e�ect of treatment.
Prognostic factors can be easily added to this regression, as extra covariates in a multivariate
time-dependent Cox regression.
If the e�ect of such a covariate does not vary over time and is identical for the di�erent

treatments, then adding this covariate in a multivariate Cox regression may a�ect the baseline
hazard and the estimates of treatment and treatment by time interaction. After having obtained
the two survival curves for D1- and D2-dissection for a reference value of that covariate, the
survival curves for D1- and D2-dissection for a di�erent value of that covariate will be
similar to the survival curves for D1 and D2 for the reference value, but shifted upwards or
downwards in a proportional way, depending on the direction of the e�ect. With a proportional
shift we mean a shift as is seen in the familiar context of time-�xed proportional hazards
regression, i.e. the survival curves for D1 (and D2) for di�erent values of the covariate will
be parallel on the log(-log)-probability scale.
But things start to become more complicated when the e�ect of a covariate may also depend

on time or on treatment or on both time and treatment. When the e�ect of a covariate itself
is time-dependent, the baseline hazard function and the estimates of treatment and treatment
by time interaction may again change. In this case, however, the survival curves for D1 (D2)
for di�erent values of the covariate will not change in a proportional way; the shift may
be negligible early in time and quite large for larger values of t, or the other way around,
depending on the direction of the time-dependent e�ect of the covariate.
When the e�ect of a covariate depends on treatment, the situation is again di�erent. Then

both survival curves are shifted upwards or downwards, each in a proportional way. The
size of the shifts however will di�er for the di�erent treatments. As a result, the survival
curves may cross at di�erent points in time, for di�erent values of the covariate. The most
complicated situation occurs when the e�ect of the covariate changes both with time and
treatment; then any combination of the individual e�ects on the survival curves of covariate
by time and covariate by treatment interaction is conceivable.
To conduct a multivariate analysis, we took the practical approach of �rst studying time-

dependent e�ects for each covariate separately. The e�ect of each covariate was �rst evaluated
univariately, then in a bivariate Cox regression with the covariate and its interaction with time,
again taking f(t)= log(t+1), with t indicating time since surgery in months. Treatment was
not included at this stage. The result of this analysis is shown in Table III.
Each of the covariates, with the exception of gender, has a signi�cant e�ect on survival.

Time-dependent e�ects were only observed for residual tumour (p=0:023) and resection type
(p=0:025).
We proceeded with the multivariate Cox regression analysis in three steps. First we used

a forward selection procedure in which each of the covariates and their interaction with time
was included. A covariate by time interaction was only considered signi�cant if the likelihood-
ratio test for the model with both covariate and covariate by time indicated a signi�cantly
better �t compared to the model without. In the second step, treatment and interaction of
treatment with time was entered. In the last step, all interactions of covariates with treatment
and of covariates with treatment and time were entered in a forward selection procedure. A
covariate by treatment interaction was only considered signi�cant if the likelihood-ratio test
for the model with both covariate and covariate by treatment indicated a signi�cantly better

Copyright ? 2005 John Wiley & Sons, Ltd. Statist. Med. 2005; 24:2807–2821
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Table III. Results from uni- and bivariate Cox regressions including covariate
and covariate by time e�ects.

Covariate e�ect Time e�ect Overall test

Variable Coe�cient SE p-value Coe�cient SE p-value p-value

Gender 0.31
Female −0:148 0.096 0.12 0.005 0.083 0.95

Lymph node involvement ¡0.001
Positive 1.100 0.104 ¡0.001 0.051 0.091 0.57

Age ¡0.001
¿65 years 0.549 0.096 ¡0.001 −0:069 0.085 0.41

Residual tumour ¡0.001
R1 1.266 0.135 ¡0.001 0.273 0.120 0.023

T-stage ¡0.001 0.74 ¡0.001
T2 0.871 0.138 ¡0.001 −0:093 0.128 0.47
T3 1.543 0.145 ¡0.001 −0:051 0.134 0.71

Resection type ¡0.001
Partial −0:617 0.096 ¡0.001 0.191 0.085 0.025

Tumour location ¡0.001 0.71 ¡0.001
C −0:638 0.188 0.001 0.133 0.165 0.42
M or A −0:952 0.140 ¡0.001 0.049 0.118 0.68

The regression coe�cient for a speci�c covariate in the column ‘Covariate e�ect’ refers to the regres-
sion coe�cient in a univariate Cox regression with only that covariate as time-�xed e�ect.

�t compared to the model without. A covariate by treatment by time interaction was only
considered signi�cant if the likelihood-ratio test for the model with both covariate, covariate
by treatment and covariate by treatment by time indicated a signi�cantly better �t compared
the model without. The results of this multivariate analysis is shown in Table IV.
In the �rst step, each of the covariates was selected that was found to be signi�cant

in the uni-bivariate analysis reported in Table III, i.e. all covariates with the exception of
gender. The only covariate by time interaction that remained signi�cant was residual tumour
by time. The hazard ratio for patients with residual tumour is 1.11 initially and increases
with time; after 60 and 120 months it equals 4.22 and 5.26, respectively. In the second step,
both treatment by time interaction and treatment were found to be signi�cant (p¡0:001 and
p=0:002, respectively). The likelihood ratio test was signi�cant as well (p=0:001, 2 degrees
of freedom). The estimated coe�cients of treatment and treatment by time in this second step
did not di�er very much from those of Table II. The third step did not result in any addition
of covariate by treatment or covariate by treatment by time interaction.
It is important to communicate these results to physicians in a way that is useful and

understandable to them. One way of doing this is by de�ning a prognostic score on the
basis of all important prognostic factors that are not time-dependent. To illustrate this we
will de�ne a score on the basis of our �nal model in Table IV as the sum of 0.785 if
the patient is lymph-node positive, 0.545 if the patient is above 65 years of age, 0.448 or
0.853 for tumour stage T2 or T3, respectively, and minus 0.347 for partial resection type.

Copyright ? 2005 John Wiley & Sons, Ltd. Statist. Med. 2005; 24:2807–2821
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Table IV. Multivariate Cox regression.

Step 1 Step 2

Variable Coe�cient (SE) p-value Coe�cient (SE) p-value

Lymph node
Negative
Positive 0.776 (0.113) ¡0.001 0.785 (0.113) ¡0.001

Age
6 65
¿65 0.556 (0.097) ¡0.001 0.545 (0.097) ¡0.001

Residual tumour
R0
R1 0.117 (0.346) 0.73 0.106 (0.353) 0.76

T-stage
T1 ¡0.001
T2 0.441 (0.146) 0.002 0.448 (0.146) 0.002
T3 0.855 (0.164) ¡0.001 0.853 (0.164) ¡0.001

Resection type
Total
Partial −0:343 (0.101) 0.001 −0:347 (0.101) 0.001

Residual tumour ∗ time
R1∗ log(t + 1) 0.307 (0.121) 0.012 0.324 (0.125) 0.009

Treatment
D1
D2 – – 0.819 (0.262) 0.0018

Treatment ∗ time
D2∗ log(t + 1) – – −0:308 (0.084) ¡0.001

Step 1: all covariates and their interaction with time in months, forward selection; step 2: treatment
and treatment by time interaction included; step 3: interactions of all covariates with treatment and
with treatment by time, forward selection, not included here because it was identical to step 2.

One could try, by rounding the coe�cients, to obtain a simpli�ed score, but we will not
pursue this here. The distribution of the prognostic scores in the D1=D2 study population is
shown in Figure 7. Based on the score distribution in the D1=D2 study population, we divide
the population into three parts of equal size, corresponding to low risk, medium risk and
high risk patients. As representative scores for low, medium and high risk, we choose the
median scores in these three regions, 0.10, 0.89 and 1.64, respectively. Figure 8 shows, for
these three types of patients and for the two di�erent levels R0 and R1 of residual tumour
separately, the survival curves of D1 and D2 resection, obtained using the methods described
in Section 3. The survival curves of D1 and D2 cross at 38.5 months for R0 (at survival
probabilities of 0.798, 0.610 and 0.350 for low, medium and high risk, respectively) and 28.6
months for R1 (at survival probabilities of 0.628, 0.360 and 0.114 for low, medium and high
risk, respectively). Because the ‘baseline’ risk for D1 dissection is progressively higher for
higher risk patients, we see a phenomenon similar to that illustrated in Figure 6 occurring:
depending on the baseline risk, the same regression coe�cients for treatment and treatment
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Figure 7. Histogram of the prognostic scores in the D1=D2 study population.

by time interaction lead to di�erent conclusions regarding which treatment is better. For low
risk patients, D2 dissection seems to be relatively advantageous, particularly for R0, while for
high risk patients, particularly for R1, the reverse is true.

5. DISCUSSION

We have used data from the Dutch Gastric Cancer Trial to illustrate an important issue arising
frequently in long-term survival data: violation of the proportional hazards assumption in the
Cox regression model. We discussed a practical approach of dealing with this problem that is
straightforward to implement in most standard statistical packages, the Cox regression model
with time-dependent covariates. We have illustrated that in the context of such a model, a
simple summary of the regression coe�cients of both time-�xed and time-dependent covariates
is not su�cient to fully describe the e�ect of these covariates on the survival probabilities. For
this purpose, the baseline hazard needs to be estimated as well. Estimation of the baseline
hazard, however, is still a weak point for most statistical packages, with the exception of
S-plus and R.
Other approaches of dealing with time-dependent covariates e�ects are of course also pos-

sible. Some authors [8, 10] have suggested a spline approach to smooth the hazard ratio over
time. Frailty models have also been used to model time-dependent e�ects of covariates, the
underlying idea being that deviations from proportional hazards may re�ect selection e�ects in
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Figure 8. Model-based survival curves for D1- and D2-dissection, for low, medium and high
risk patients, for R0 and R1 separately.

a heterogeneous population, due to omitted covariates [11]. Other approaches worth mention-
ing are additive hazards, accelerated failure time models, and a newly proposed semiparametric
hazard regression model [12], containing both the Cox model and the accelerated failure time
model as special cases. This model is able to capture certain time-dependent covariate e�ects
in an e�cient and elegant way. Two draw-backs of the semiparametric hazard regression
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model (at this moment) are the lack of available software to estimate parameters within this
model and the di�culty in interpreting the resulting estimates.
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