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Abstract

Structural models, or dynamic linear models as they are known in

the Bayesian literature, have been widely used to model and predict

time series using a decomposition in non-observable components. Due

to the direct interpretation of the parameters, structural models are

a powerful and simple methodology to analyse time series in several

areas, such as economy, climatology, environmental sciences, among

others. The parameters of such models can be estimated either using

maximum likelihood or Bayesian procedures, generally implemented

using conjugate priors, and there are plenty of works in the litera-

ture employing both methods. But are there situations where one of

these approaches should be preferred? In this work, instead of conju-

gate priors for the hyperparameters, the Jeffreys prior is used in the

Bayesian approach, along with the uniform prior, and the results are

compared to the maximum likelihood method, in an extensive Monte

Carlo study. Interval estimation is also evaluated and, to this pur-

pose, bootstrap confidence intervals are introduced in the context of

structural models and their performance is compared to the asymp-

totic and credibility intervals. A real time series of a Brazilian electric

company is used as illustration.
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1 Introduction

One way of modelling a time series is through its decomposition in non-
observable components by means of a state space formulation. Under a
classical perspective, the modelling is performed using structural models,
proposed by Harvey (1989). A very similar approach can be obtained by
using a Bayesian procedure, which in this case is known as dynamic lin-
ear models (DLM) (West and Harrison; 1997). Parameter estimation can
be performed by estimating the system matrices obtained from the state
space equations. Both methods, classical and Bayesian, use the Kalman filter
(Kalman; 1960) to obtain the estimates of the latent variables, that represent
the non-observable components, and their variance, named hyperparameters,
but differ in the way the parameter estimation is performed.

In the classical approach, the parameter estimates are obtained maximiz-
ing the likelihood function and inferences can be done via the asymptotic
distribution of the parameters (Harvey; 1989). More details about the use of
structural models can be found in Harvey, Koopman and Shephard (2004),
Durbin and Koopman (2001) and Harvey and Proietti (2005).

Under the Bayesian approach, the parameter estimation may be quite
cumbersome, as most of the times the posterior distribution of the param-
eters is extremely complicated or can even not exist. Due to this difficulty,
Markov chain Monte Carlo (MCMC) methods are often employed (Gamer-
man and Lopes; 2006, see) to perform the estimation. Although nowadays
there are some alternative procedures, like particle learning filters (Carvalho
et al.; 2009), that can be computationally faster, the MCMC method was
chosen here because of its robustness and easiness of implementation. Re-
cently, many authors have worked on the Bayesian parameter estimation in
dynamic linear models using MCMC (see, for instance, Carter and Kohn
(1994), Lopes, Moreira and Schmidt (1999), Reis, Salazar and Gamerman
(2006) and Schmidt, Gamerman and Moreira (1999)). Especially for trend
and cyclical models, the Bayesian approach can yield more informa-
tive results by using prior information for the periodicity (Harvey,
Trimbur and Dijk; 2007).

Another way of making inferences about the parameters, with a significa-
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tive gain for short series, is using the bootstrap. The most common procedure
to perform the bootstrap in time series is to resample the residuals of the
fitted model, which are generally uncorrelated if there is not order misspec-
ification (Efron and Tibshirani; 1993). This procedure is simple to apply
and leads to good theoretical behaviour of the estimates, although it is not
robust against violation of the model assumptions. Nevertheless, there are
many papers in the literature employing this approach in the state space con-
text, such as Franco et al. (2008), Franco and Souza (2002), Pfeffermann and
Tiller (2005), Stoffer and Wall (1991), Wall and Stoffer (2002) and Rodrigues
and Ruiz (2009), just to cite a few.

According to the previous paragraphs, there is a fairly large literature
applying classical and Bayesian procedures to state space models, whereas
research comparing the two methodologies is very restricted. Thus, it would
be an interesting issue to evaluate the performance of both approaches, ad-
dressing features such as bias and mean square errors of the point estimation
procedures as well as interval estimation for the parameters.

Thus, the main contribution of this work is to implement the bootstrap
and Bayesian methods, comparing these methodologies to the classical max-
imum likelihood approach to make inferences for the hyperparameters in
structural models. In order to make a fair comparison between classical
and Bayesian methods and also because there is generally little information
about the behavior of the hyperparameters, Bayesian inference will be based
on the least possible subjective information. Therefore, instead of the in-
verse gamma distribution usually employed in the literature as prior for the
variance of the non-observable components, uniform and Jeffreys priors are
used, implemented using a hybrid version of the Metropolis-Hastings algo-
rithm, once the priors are not conjugated. The Local Level Model (LLM),
Local Linear Trend Model (LLT) and Structural Basic Model (SBM) are used
to this purpose.

In addition, 95% confidence and credibility intervals for the hyperparam-
eters are built. The confidence intervals include the asymptotic and some
bootstrap intervals, namely the percentile, the bias corrected and the bias
corrected and accelerated (Efron and Tibshirani; 1986). The procedures are
compared based on the percentage of times the intervals contain the real
value of the hyperparameter, in a sequence of Monte Carlo simulations. An
application to a real time series is also presented, as an illustration of the
methodologies.

This paper is organized as follows. Section 2 presents the structural
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models considered in this work, along with classical and Bayesian parameter
estimation. Section 3 presents the computational procedures used, that is,
bootstrap and MCMC. In Section 4 are the simulation results obtained for
estimation and confidence intervals. Section 5 applies the methodologies to
a real time series and Section 6 concludes the work.

2 Structural model and parameter estima-

tion

A univariate time series yt can be decomposed in a sum of its unobserved
components, such as trend (�), seasonal () and disturbances (�). A pro-
cedure that has been widely used to model a series based on this approach
is the structural model (Harvey; 1989; West and Harrison; 1997, see). Fol-
lowing this procedure, a time series yt, t = 1, ..., n, that presents these
characteristics can be written as

yt = �t + t + �t, �t ∼ N(0, �2
� ) i.i.d. (1)

�t = �t−1 + �t−1 + �t, �t ∼ N(0, �2
�) i.i.d. (2)

�t = �t−1 + �t, �t ∼ N(0, �2
� ) i.i.d. (3)

t = t−1 − ...− t−s+1 + !t, !t ∼ N(0, �2
!) i.i.d. (4)

where s is the number of seasonal periods and �t, �t, �t and !t are white
noise disturbances mutually uncorrelated. The above model is known as
the Structural Basic Model (SBM). Although there are nowadays sev-
eral representations for linear seasonal models in the structural
approach (see Proietti (2000) for details), this work will use the
form given in Equation (4), as stated in Harvey and Todd (1983),
as this is a commomly used specification in empirical works.

If equation (4) and the t component in equation (1) are dropped, the
resulting model is called the Local Linear Trend Model (LLT). This model
arises when the series presents a trend with an increasing (or decreasing)
slope along time. The simplest model is the Local Level Model (LLM). It
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arises when the series moves along time as a random walk. To write this
model, only equations (1) and (2) are used, dropping the terms �t−1 and t.

Equations (1)-(4) are usually written in the state space form, to allow the
use of linear algorithms, such as the Kalman filter (Kalman; 1960), in the
estimation of the unobserved components. In this form, there are only two
equations, the observation and the state equations:

yt = z′t�t + dt + �t, �t ∼ N(0, ℎt) (5)

�t = Tt�t−1 + ct +Rt�t, �t ∼ N(0,Qt) (6)

where �t is the state vector, zt, Tt and Rt are system matrices, dt and ct are
covariates, �t are uncorrelated disturbances with variance ℎt, �t is a vector
of serially uncorrelated disturbances whose covariance matrix is given by Qt

and �t and �t are independent. Once the model is in the state space form,
the Kalman filter can be applied to estimate the hyperparameter vector,
 = ( 1,  2, ...,  p), which in this case are the variances of the disturbances.

The assumptions of the model are:
(1) E(�0) = a0 and Cov(�0, �

′
0) = P0, where �0 is the initial state.

(2) E(�t,�t) = 0 and E(�t,�t) = E(�t,�t) = 0, for all t = 1, ..., n.

The estimation of the hyperparameter vector  can be done either us-
ing classical methods (i.e, maximizing the likelihood function) or Bayesian
methods. In Subsections 2.1 and 2.2 the classical and Bayesian estimation
methods considered in this work are described in some detail.

2.1 Classical inference

The likelihood function can be obtained through the one-step ahead pre-
diction error, �t = yt − ỹt∣t−1, calculated using the Kalman filter, assuming
that (yt∣Yt−1) ∼ N(ỹt∣t−1, Ft), where Yt−1 are the observations up to time
t−1 and ỹt∣t−1 is the one-step ahead forecasting. For a univariate time series
of size n, the logarithm of the likelihood function is given by

lnL( ;Yn) = ln
n∏

t=1

p(yt∣Yt−1) = −n
2
ln(2�)− 1

2

n∑

t=1

ln∣Ft∣ −
1

2

n∑

t=1

� ′tF
−1
t �t.

(7)
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The estimated hyperparameter vector is the one that maximizes the above
likelihood function. As this is a nonlinear function of the hyperparameters,
the estimation should be done numerically. In this work, the well-known
BFGS optimization algorithm is employed (more details can be seen in Franco
et al. (2008)). As in this case the parameters are variances, and therefore
positive quantities, a reparameterization should be performed to avoid the
problem of obtaining negative variances. Thus, a logarithmic transforma-
tion is used to take into account the nonnegativity constraints.

Harvey (1989) states that, under some regularity conditions, the maxi-
mum likelihood estimator (MLE),  ̂, is asymptotically normal with mean  
and covariance matrix V ar( ) = n−1IA−1( ), in which

IA( ) = lim
n→∞

n−1I( ),

and I( ) is the Fisher information matrix, given by

Iij( ) =
1

2

∑

t

{
tr

[
F−1
t

∂Ft
∂ i

F−1
t

∂Ft
∂ j

]}
+E

{
∑

t

(
∂�t
∂ i

)′

F−1
t

∂�t
∂ j

}
, (8)

where i, j = 1, ..., p. For all structural models considered in this work, the
regularity conditions cited above are satisfied if  is an interior point of the
parameter space. If one or more of the elements of  lies on the boundary
of the parameter space, the joint asymptotic distribution of the MLE can be
affected (Harvey; 1989).

The analytical form of I( ) is not straightforward to compute in this
case. In order to simplify the computation of the Fisher information matrix,
the expectation operator can be omitted in expression (8), once this new
expression is asymptotically equivalent. Franco et al. (2008) show a numerical
way of calculating the asymptotic variances of the hyperparameters, based
on a suggestion of Harvey (1989) to calculate the derivatives of �t and Ft in
the Kalman filter.

A 100(1 − �)% asymptotic confidence interval for  i, i = 1, ...p is given
by

 ̂i ± z�/2

√
Var( ̂i),

in which z�/2 is the �/2 percentile of the Normal distribution, and V ar( ̂i)

is obtained from the elements in the diagonal of V ar( ̂).
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2.2 Bayesian inference

If a prior �( ) for  is specified, then the posterior distribution is given
by

�( ∣ Yn) =
L( ;Yn)�( )∫
L(�;Yn)�(�)d�

. (9)

Bayesian estimation depends on the specification of a prior for all un-
known parameters, but most of the times it is not feasible or even impossible.
In this case reference priors, obtained through some formal method, can be
used. The most common one is the Jeffreys prior (Migon and Gamerman;
1999), which in this case is calculated through a numerical approximation of
the Fisher information matrix, I( ), and given by

�( ) ≃ det(I( ))1/2 (10)

where I( ) is approximated in the same way as in Section 2.1.
In this work a proper uniform prior is also considered. The prior for the

state parameters (�1, . . . , �n)
′

, given  , can be obtained with the specifica-
tion in (6) and initial values for �0.

The most used Bayes estimators are the posterior mean, obtained when
the quadratic loss function is used, the posterior median, obtained when the
absolute loss function is used, and the posterior mode, obtained when the
0-1 loss function is used (Migon and Gamerman; 1999).

Credibility intervals for  i, i = 1, ...p, can be built as follows. Given �,
any interval (t1, t2) satisfying

t2∫

t1

�( i ∣ Yn)d i = 1− � (11)

is a credibility interval for  i with level 100(1− �)%.

3 Computational procedures

In this section the computational procedures used to make inferences
about the hyperparameter vector are described, namely the bootstrap in the
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classical approach and the Metropolis-Hastings algorithm in the Bayesian
approach.

3.1 Bootstrap

The bootstrap method is a resampling technique that can be used to
approximate the theoretical distribution by the empirical distribution of a
finite sample of observations. In the context of time series the observations
are not independently distributed and therefore the observed series needs to
be ‘whitened’, which means that the serial correlation in the observations
must be removed. When the true correlations are identified, the residuals of
the model are independent. The bootstrap technique can therefore be applied
to the residuals of the model whether the distribution is known (parametric
bootstrap) or not (nonparametric bootstrap).

The bootstrap procedure used here is based on the work of Stoffer and
Wall (1991). The Kalman filter computes the one-step forecasting errors,
which are independently distributed for a correctly specified model. Stan-
dard bootstrap methods are applied to the forecast errors and a simple mod-
ification is used to obtain the bootstrap for the original observations.

The full procedure works as follows. Using the Kalman filter, the in-
novations, �t, and their variances, Ft, are obtained recursively. Next, the
innovations should be centered and re-scaled to account for problems as non-
zero means or heteroscedastic residuals. The bootstrap innovations, e∗t , are
obtained by resampling the centered and re-scaled innovations, with replace-
ment. Let the vector St be defined as

St =

[
at+1∣t

yt

]
,

in which at+1∣t is a linear estimator for the state vector �t+1, based on Yt =
(y1, . . . , yt)

′

, with variance P t+1∣t. Then vector St is updated as

St =

[
T t 0
zt 0

]
St−1 +

[
T tKt

√
Ft√

Ft

]
�t, (12)

where Kt = P t∣t−1z
′

tF
−1
t is the Kalman gain’s matrix. The bootstrap series

y∗t can be calculated solving Eq. (12) by substituting �t by e
∗
t and using the

estimated values Ft and Kt obtained from the Kalman filter. The initial
conditions of the Kalman Filter are fixed at their given values and  is held
fixed at  ̂. The MLE for the bootstrap series, y∗t , will be called here  ̂

∗
.
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Three methods of constructing bootstrap confidence intervals, proposed
in Efron and Tibshirani (1986), are considered in this study. The first proce-
dure, the percentile interval, although being reliable, does not have satisfac-
tory coverage probabilities. Thus, Efron and Tibshirani (1993) proposed two
improved versions of the percentile method, the bias-corrected and the bias-
corrected and accelerated method. These later two procedures are shown to
perform better than the former one, in the sense that they can approach the
exact confidence intervals, when such intervals can be calculated, and have
accurate coverage probabilities in most situations, apart from some small
sample cases.

For each one of the methods described below, B bootstrap series y∗1, y∗2, ..., y∗B

are generated and the estimated hyperparameter vector,  ̂
∗
= ( ̂∗

1, ...,  ̂
∗
p), is

calculated for each series.

i) Percentile (PERC)

Taking the �/2 and 1 − �/2 percentiles of the bootstrap distribution of
 ̂∗
i , i = 1, ..., p, the 100(1− �)% percentile interval is defined by

[ ̂
∗(�/2)
i ,  ̂

∗(1−�/2)
i ].

Thus, in practice, after estimating the values of  i for each of the B
bootstrap series, they are ordered and the 100(�/2)tℎ and 100(1 − �/2)tℎ

values are taken as the lower and upper points of the intervals, respectively.

ii) Bias-corrected (BC)

This method also uses the percentiles of the bootstrap distribution, but
not exactly the (�/2)tℎ and (1− �/2)tℎ. Instead, it corrects these values for
possible bias in the estimation of  i, through a quantity m0 which measures
the median bias of  ̂i.

The 100(1− �)% bias-corrected interval is defined by

[ ̂
∗(�1)
i ,  ̂

∗(�2)
i ]

where �1 = Φ
(
2m0 + z(�/2)

)
, �2 = Φ

(
2m0 + z(1−�/2)

)
, Φ is the cumulative

distribution function of a N(0, 1) and z(�) its 100�tℎ percentile point.

The value of m0 is calculated using the proportion of  ̂∗
i in the bootstrap

samples that are smaller than the  ̂i estimated in the original series,
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m0 = Φ−1

(
# ̂∗

i (b) <  ̂i
B

)
.

iii)Bias-corrected and accelerated (BCa)

The BCa interval, besides calculating the quantity m0, also calculates the
acceleration, given by

a =

∑n
j=1( ̂i(.)−  ̂i(j))

3

6
[∑n

j=1( ̂i(.)−  ̂i(j))2
]3/2

where  ̂i(j) is the hyperparameter estimate calculated for the sample with
the jtℎ observation deleted and  ̂i(⋅) =

∑n
j=1  ̂i(j)/n.

Thus, the 100(1− �)% BCa interval is given by

[ ̂
∗(�1)
i ,  ̂

∗(�2)
i ]

with �1 = Φ
(
m0 +

m0+z(�/2)

1−a(m0+z(�/2))

)
and �2 = Φ

(
m0 +

m0+z(1−�/2)

1−a(m0+z(1−�/2))

)
.

The BCa interval is second order accurate and it has also the advantage
of being transformation-respecting (Efron and Tibshirani; 1993).

3.2 Metropolis-Hastings Algorithm

Markov chain Monte Carlo (MCMC) methods have been widely used in
the Bayesian inference, as they enable the generation of a sample of the
posterior distribution of a parameter or a random object of interest using
algorithms as the Gibbs sampling and Metropolis-Hastings. The main idea
of the MCMC methods is to construct a Markov chain from which it is easy
to generate a trajectory and that leads to an equilibrium distribution, after
a sufficiently large number of iterations, equal to the distribution of interest
(Gamerman and Lopes; 2006, see).

In this study, a hybrid version of the Metropolis-Hastings (M-H) algo-
rithm (Hastings; 1970; Metropolis et al.; 1953) is adopted to obtain the mean
and the quantiles of the distribution of interest. Given a target distribution
�(⋅), the Metropolis-Hastings algorithm and its variants enable the creation
of ergodic Markov chains that have �(⋅) as the equilibrium distribution. This
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algorithm is used to simulate a posterior distribution through a candidate-
generating or transition density, q(y∣x), from a state x to another state y,
with the following properties

∙
∫
q(y∣x)dy = 1;

∙ q(y∣x) can be evaluated for all x and y;

∙ for each x it is possible to generate realizations with distribution q(.∣x).

In the hybrid version, the p hyperparameters, ( 1, . . . ,  p), are updated
separately, with different candidate-generating densities.

The M-H algorithm is initiated from an arbitrary point,  (0), and evolves
to the next point of the chain through the candidate-generating density in
the following way

1. Generate  
(j)
i ∼ qi(.∣ (j−1)

i ), i = 1, ...p;

2. Calculate the Hastings ratio

Ri =
[
�i( 

(j)
i )qi( 

(j−1)
i ∣ (j)

i )
]
/
[
�i( 

(j−1)
i )qi( 

(j)
i ∣ (j−1)

i )
]
,

where �i( i) is the full conditional of  i;

3. Fix the acceptance probability equal to min {1, Ri};

4. Obtain the next value of the chain as  
(j)
i with probability min {1, Ri},

or  
(j−1)
i with probability 1−min {1, Ri};

5. repeat the above steps until the convergence of the chain.

The acceptance probabilities Ri are defined to ensure a reversible chain
and its convergence to the equilibrium distribution �(⋅).

There are several possibilities for candidate-generating densities in the
literature. In this work, a random walk centered in the last accepted estimate
of the hyperparameter, qi( 

(j)
i ∣ (j−1)

i ) = N( 
(j−1)
i , �2

i ), i = 1, ...p, is used.
The values of �2

i are defined such that the acceptance rates are between 20%
and 50% (Chib and Greenberg; 1995).

Like the classical approach, sometimes constraints in the parametric space
are necessary, as for example in the case of variances. In these situations,
the proposed density should be restricted to this interval and the proposition
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distributions are defined as truncated normals to guarantee that the proper-
ties defined above are preserved. Due to this fact, a correction is performed
in Hastings ratio (step 2). This approach considers the marginal posterior
distribution of the hyperparameters once the state parameters are integrated
out. This is equivalent to sampling all parameters jointly since the full con-
ditional for the state parameters given the hyperparameter is analytically
available. Reis, Salazar and Gamerman (2006) provide substantial empir-
ical evidence in favor of this joint sampling scheme against other blocking
procedures.

There are different ways of obtaining full conditional posterior samples
of (�0, . . . , �n)

′

. One way is to explore statistical properties of the model in
the following way,

�(�0, . . . , �n∣ ,Y n) = �(�n∣ ,Y n)
n∏

t=0

�(�t∣�t+1, ,Y t) (13)

where �(�t∣�t+1, ,Y t) is given by

(�t∣�t+1, ,Y t) ∼ N [(T
′

tQ
−1T t + P

−1
t )−1(T

′

tQ
−1�t+1 + P

−1
t at),

(T
′

tQ
−1T t + P

−1
t )−1]

(14)

with t = 0, . . . , n− 1.
The results are used in the sampling scheme proposed by Carter and Kohn

(1994) and Frühwirth-Schnatter (1994), called Forward Filtering Backward
Smoothing (FFBS). The idea is to sample from (�0, . . . , �n∣ ,Y n) according
to the following algorithm:

1. Sample �n from its updated distribution and set t = n− 1;

2. Sample �t from the distribution in (14);

3. Set t = t− 1 and return to step 2 until t = 0.

The step 1 is obtained updating the Kalman Filter from t = 0 to t = n.The
updated mean at and covariance matrix P t are saved and used in step 2 of
the algorithm.

Another way of sampling (�0, . . . , �n)
′

can be done through its full con-
ditional. In particular, fast inversion algorithms can be used ensuring that
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samples from (�0, . . . , �n)
′

are quickly drawn. More details about the sam-
pling schemes of (�0, . . . , �n)

′

can be seen in Migon et al. (2005) and Reis,
Salazar and Gamerman (2006).

Another important aspect is the evaluation of the convergence of the al-
gorithm. One of the most popular ways to check the convergence is using the
method of Geweke (1992), available in R in the package Coda (Plummer et
al.; 2005). The trajectory (trace) of the generated chain can also be observed,
as suggested by Gamerman and Lopes (2006), to search for qualitatively sim-
ilar movements, to verify if the convergence to the stationary distribution was
attained. Besides, the autocorrelation function of the generated chains must
show a fast decrease, characteristic of stationary distributions.

4 Simulation results

In this section the results obtained from Monte Carlo (MC) experiments,
implemented in the Ox language (Doornik; 1999), are presented. The per-
formance of the maximum likelihood (MLE) and Bayes estimators (BE) -
Mean, Median and Mode - were evaluated for the LLM model with several
combination of hyperparameters. The values were chosen in order to ob-
tain the following signal-to-noise ratios: q = 0.02, q = 0.50, q = 1.00 and
q = 2.00, where q = �2

�/�
2
� . In this case, series of size n = 100 and 300 were

generated with a burn-in equal to 100. For the LLT and SBM models, only
one combination of hyperparameter values is presented, with series of size
n = 200.

For the BE, a chain with 20,000 samples was generated for each parameter
and, as there was no thinning, the last 4,000 samples were kept. The method
of Geweke (1992) and graphics of the estimated autocorrelation functions for
the chains of hyperparameters were used to assess the convergence of the
MCMC algorithm. The number of MC and bootstrap replications were fixed
at 500. Uniform and Jeffreys priors were considered for the hyperparameters
and the prior for �0 was set as N(0, 104). The level and probability of the
confidence and credibility intervals, respectively, were fixed at 0.95.

4.1 Comparing the estimation procedures

Table 1 shows the results for the hyperparameter estimation in the LLM
model. The methods are compared through the bias and mean square error
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Table 1: Maximum likelihood and Bayesian estimation for the LLM
MLE Mean Median Mode Mean Median

n q  Jeffreys prior Uniform prior
100 0.02 �2

� = 0.1 0.11 0.15 0.11 0.06 0.24 0.19
(0.01) (0.01) (0.01) (0.01) (0.04) (0.02)

�2
� = 5 4.88 4.94 4.86 4.87 5.00 4.91

(0.57) (0.57) (0.57) (0.61) (0.59) (0.58)
0.50 �2

� = 2 2.02 2.17 2.02 1.78 2.47 2.30
(0.60) (0.67) (0.60) (0.58) (0.93) (0.75)

�2
� = 4 3.94 4.01 3.93 3.91 4.05 3.97

(0.77) (0.79) (0.77) (0.78) (0.80) (0.77)
1.00 �2

� = 2 2.03 2.13 2.02 1.84 2.35 2.22
(0.50) (0.50) (0.46) (0.48) (0.65) (0.56)

�2
� = 2 1.97 2.01 1.97 1.95 2.04 1.99

(0.31) (0.30) (0.30) (0.48) (0.31) (0.30)
2.00 �2

� = 4 4.06 4.12 3.97 3.76 4.46 4.30
(1.62) (1.37) (1.37) (1.57) (1.66) (1.55)

�2
� = 2 1.96 2.07 2.01 1.95 2.09 2.03

(0.60) (0.53) (0.53) (0.61) (0.53) (0.53)

300 0.02 �2
� = 0.1 0.10 0.11 0.10 0.08 0.14 0.12

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
�2
� = 5 5.00 5.03 5.00 5.00 5.04 5.01

(0.21) (0.21) (0.21) (0.21) (0.21) (0.21)
0.50 �2

� = 2 1.99 2.04 1.99 1.90 2.13 2.08
(0.17) (0.18) (0.17) (0.17) (0.20) (0.19)

�2
� = 4 4.01 4.03 4.00 4.00 4.04 4.02

(0.26) (0.27) (0.26) (0.26) (0.27) (0.27)
1.00 �2

� = 2 1.98 2.02 1.98 1.92 2.09 2.05
(0.13) (0.13) (0.13) (0.14) (0.15) (0.14)

�2
� = 2 2.01 2.02 2.01 2.00 2.03 2.01

(0.10) (0.10) (0.10) (0.10) (0.10) (0.10)
2.00 �2

� = 4 3.97 4.03 3.97 3.87 4.14 4.07
(0.43) (0.44) (0.43) (0.44) (0.46) (0.45)

�2
� = 2 2.01 2.03 2.01 2.00 2.03 2.02

(0.19) (0.19) (0.18) (0.18) (0.19) (0.19)
Obs.: Numbers in brackets are the mean square error. The posterior Mode is not shown for the uniform

prior as, in this case, it is the same as the MLE.

(mse) of the estimates.
Regarding the estimation of the variance of the level component, �2

�,
the MLE and BE with Jeffreys prior should be preferred to the BE with
uniform prior, as they present smaller mse. Concerning the bias, the MLE
and posterior Median with Jeffreys prior are the ones that present the best
performance. The posterior Mean and Median with uniform prior seem to
overestimate the real value of this hyperparameter. For the variance of the
disturbances, �2

� , the results are very similar for all methods. Increasing the
sample size, bias and mse decrease, as expected, but the behaviour of the
estimation procedures seems to remain the same.
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To verify the convergence of the M-H algorithm, Figures 1 and 2 present
the estimated autocorrelation function of the generated chains for hyper-
parameters �2

� and �2
� , with uniform and Jeffreys priors, respectively, and

n = 100. As it can be seen, there is a quick decay in the autocorrelation
functions, with values very close to zero from lag 20. The same graphs were
plotted to the other models (not shown) and results were very similar. The
value of the z statistic from Geweke’s method was not inside the 1% sig-
nificance region for generated chains, meaning that the convergence of the
algorithm was attained.
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Figure 1: Estimated autocorrelation functions for the chains of hyperparam-
eters with n=100 and Uniform prior, in 500 experiments Monte Carlo. The
solid and dashed lines indicate the mean, the 0.05 (lower limit) and 0.95
(upper limit) percentiles, respectively.

The results for the LLT model are shown in Table 2. For the �2
� compo-

nent, the MLE and posterior Mode with Jeffreys prior are the less biased,
but present larger mse than the other estimators. For �2

� and the slope com-
ponent, �2

� , there not seems to be much difference among the procedures,
being all of them very close to the real value of the hyperparameter, with
similar values for the mse.
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Figure 2: Estimated autocorrelation functions for the chains of hyperparam-
eters with n=100 and Jeffreys prior, in 500 experiments Monte Carlo. The
solid and dashed lines indicate the mean, the 0.05 (lower limit) and 0.95
(upper limit) percentiles, respectively.

Results for the SBM are also presented in Table 2. It seems that the
introduction of the seasonal component in the model brings some changes in
the estimation methods with respect to the conclusions drawn for the other
two models. For example, in the case of the level component, �2

�, the BE
with a Uniform prior presents now smaller mse than the other methods,
although they overestimate the value of the parameter. The MLE is still the
less biased. For �2

� and �2
!, the BE with a uniform prior possess larger bias

than the other procedures, although the mse is very similar for all of them.
For the error component, �2

� , MLE and posterior Median with Jeffreys prior
show smaller bias, but larger mse than the BE with a uniform prior.

4.2 Confidence and credibility intervals

It is well known that the credible and coverage probabilities have different
meanings and interpretations. Citing Casella and Berger (2002), ”The first

reflects the experimenter´s subjective beliefs, while the later reflects the un-
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Table 2: Maximum likelihood and Bayesian estimation for the LLT and SBM
(n=200)

MLE Mean Median Mode Mean Median
Model  Jeffreys prior Uniform prior
LTL �2

� = 0.5 0.520 0.590 0.550 0.520 0.606 0.563
(0.110) (0.078) (0.077) (0.118) (0.079) (0.076)

�2
� = 0.1 0.098 0.100 0.094 0.084 0.118 0.110

(0.002) (0.001) (0.001) (0.002) (0.002) (0.035)
�2
� = 1.0 0.990 0.970 0.968 0.970 0.992 0.986

(0.044) (0.034) (0.035) (0.045) (0.034) (0.035)
SBM �2

� = 0.5 0.496 0.437 0.400 0.334 0.553 0.524
(0.079) (0.069) (0.081) (0.167) (0.057) (0.057)

�2
� = 0.03 0.030 0.038 0.034 0.032 0.041 0.037

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
�2
! = 0.1 0.103 0.109 0.101 0.084 0.132 0.122

(0.002) (0.002) (0.002) (0.002) (0.003) (0.002)
�2
� = 1.0 0.998 1.104 1.094 1.174 0.981 0.971

(0.063) (0.075) (0.074) (0.144) (0.052) (0.053)
Obs.: Numbers in brackets are the mean square error. The posterior Mode is not shown for the uniform

prior as, in this case, it is the same as the MLE.

certainty in the sampling procedure” . Even though, in this work an attempt
to compare the results obtained using these two procedures will be done.

Bootstrap and asymptotic intervals are built under the classical paradigm.
The bootstrap is used here based on the work of Franco et al. (2008), which
shows that the bootstrap mimics very closely the behavior of the MLE, which
enables this technique to be used as a tool for building confidence intervals
in this case. Under the Bayesian paradigm, credibility intervals using the
Jeffreys and uniform priors are calculated. The percentage of times that the
built intervals contain the true value of the hyperparameters are obtained
based on a large number of Monte Carlo simulations.

Table 3 presents the results for the LLM. It can be seen that the intervals
present coverage rates close to the 0.95 fixed point, except the asymptotic
interval for n = 100 and �2

� for n = 300. In general, the best combination
of small width and coverage rate close to 0.95 is attained by the Jeffreys
credibility interval, but the bootstrap intervals show a good performance
specially for q ≥ 1 and �2

� when q = 0.50. The asymptotic interval improves
its performance when the sample size increases, being close to the other
procedures, except for q = 2.00. The uniform credibility interval presents
the larger widths, for all cases.

In Table 4 are the results for the LLT and SBM. For the LLT, it can be
seen that coverage rates are always above the 95% level for the �2

� compo-
nent, for all methods. For the �2

� and �
2
� components, the bootstrap intervals
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Table 3: Confidence and credibility intervals for the LLM with nominal level
of 95%.

n=100

q  Asymp Cred.Unif Cred.Jeff Perc BC BCa
0.02 �2

� = 0.1 [-0.05; 0.27] [0.04; 0.77] [0.02; 0.49] [0.01; 0.36] [0.01; 0.35] [0.01; 0.35]
(0.32) (0.73) (0.47) (0.35) (0.34) (0.34)
0.83 0.92 0.96 0.90 0.90 0.90

�2
� = 5 [3.42; 6.34] [3.57; 6.88] [3.58; 6.73] [3.49; 6.37] [3.59; 6.51] [3.59; 6.51]

(2.92) (3.31) (3.15) (2.88) (2.92) (2.92)
0.92 0.96 0.96 0.91 0.92 0.92

0.50 �2
� = 2 [0.56; 3.49] [1.08; 4.81] [0.95;4.25] [0.80;3.96] [0.77; 3.92] [0.77; 3.92]

(2.93) (3.73) (3.30) (3.16) (3.15) (3.15)
0.89 0.95 0.96 0.92 0.93 0.93

�2
� = 4 [2.22; 5.66] [2.29; 6.24] [2.33; 6.12] [2.16; 5.74] [2.27; 5.88] [2.27; 5.88]

(3.44) (3.95) (3.79) (3.58) (3.61) (3.61)
0.94 0.96 0.96 0.94 0.95 0.95

1.00 �2
� = 2 [0.74; 3.32] [1.15; 4.23] [1.04; 3.84] [0.92; 3.71] [0.83; 3.56] [0.83; 3.56]

(2.58) (3.08) (2.80) (2.79) (2.73) (2.73)
0.91 0.96 0.95 0.94 0.94 0.94

�2
� = 2 [0.88; 3.05] [0.94; 3.39] [0.96; 3.30] [0.82; 3.11] [0.95; 3.27] [0.95; 3.28]

(2.17) (2.45) (2.34) (2.29) (2.32) (2.33)
0.94 0.96 0.95 0.95 0.95 0.96

2.00 �2
� = 4 [1.74; 6.38] [2.39; 7.42] [2.21; 6.86] [2.03; 6.83] [1.79; 6.48] [1.79; 6.48]

(4.64) (5.03) (4.65) (4.80) (4.69) (4.69)
0.92 0.96 0.95 0.94 0.93 0.93

�2
� = 2 [0.46; 3.46] [0.67; 3.90] [0.70; 3.80] [0.49; 3.54] [0.69; 3.88] [0.69; 3.89]

(3.00) (3.23) (3.10) (3.05) (3.19) (3.20)
0.94 0.96 0.96 0.93 0.95 0.96

n=300

q  Asymp Cred.Unif Cred.Jeff Perc BC BCA

0.02 �2
� = 0.1 [0.01; 0.19] [0.05;0.29] [0.04; 0.24] [0.03; 0.22] [0.03; 0.21] [0.03; 0.21]

(0.18) (0.24) (0.20) (0.19) (0.18) (0.18)
0.89 0.95 0.95 0.92 0.91 0.91

�2
� = 5 [4.14; 5.86] [4.20; 6.03] [4.20; 6.01] [4.16; 5.88] [4.20; 5.93] [4.20; 5.93]

(1.72) (1.83) (1.81) (1.72) (1.73) (1.73)
0.93 0.96 0.96 0.93 0.94 0.94

0.50 �2
� = 2 [1.15; 2.83] [1.35; 3.19] [1.30; 3.05] [1.23; 2.95] [1.23; 2.95] [1.23; 2.95]

(1.68) (1.84) (1.75) (1.72) (1.72) (1.72)
0.95 0.96 0.96 0.95 0.95 0.95

�2
� = 4 [3.00; 5.02] [3.06; 5.17] [3.06; 5.15] [3.01; 5.05] [3.04; 5.08] [3.04; 5.08]

(2.02) (2.11) (2.09) (2.04) (2.04) (2.04)
0.95 0.97 0.96 0.95 0.95 0.95

1.00 �2
� = 2 [1.24; 2.73] [1.41; 2.99] [1.36; 2.90] [1.31; 2.85] [1.28; 2.81] [1.28; 2.81]

(1.49) (1.58) (1.54) (1.54) (1.53) (1.53)
0.96 0.95 0.95 0.96 0.97 0.97

�2
� = 2 [1.38; 2.64] [1.40; 2.72] [1.41; 2.70] [1.36; 2.66] [1.40; 2.71] [1.40; 2.71]

(1.26) (1.32) (1.29) (1.30) (1.31) (1.31)
0.96 0.96 0.96 0.96 0.97 0.97

2.00 �2
� = 4 [2.64; 5.31] [2.90; 5.72] [2.82; 5.58] [2.77; 5.51] [2.65; 5.35] [2.65; 5.35]

(2.67) (2.82) (2.76) (2.74) (2.70) (2.70)
0.95 0.96 0.96 0.95 0.96 0.96

�2
� = 2 [1.14; 2.88] [1.17; 2.98] [1.17; 2.96] [1.13; 2.87] [1.21; 3.01] [1.21; 3.01]

(1.74) (1.81) (1.79) (1.74) (1.80) (1.80)
0.96 0.96 0.97 0.95 0.96 0.96

Obs.: Numbers in square brackets are the limits of the intervals, in round brackets are the width and in
bold are the coverage rates of the intervals.
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Table 4: Confidence and credibility intervals for the LLT and SBM with
nominal level of 95% (n=200)
Model  Asymp Cred.Unif Cred.Jeff Perc BC BCa
LTL �2

� = 0.5 [-0.16; 1.20] [0.09; 1.38] [ 0.10; 1.33] [0.05; 1.30] [0.05; 1.46] [0.05; 1.43]
(1.36) (1.29) (1.23) (1.25) (1.41) (1.38)
0.97 0.99 0.98 0.98 0.99 0.99

�2
� = 0.1 [ 0.02; 0.18] [0.05; 0.23] [0.04; 0.19] [0.04; 0.19] [0.04;0.19] [0.04;0.19]

(0.16) (0.18) (0.15) (0.15) (0.15) (0.15)
0.90 0.97 0.94 0.94 0.95 0.95

�2
� = 1.0 [0.57; 1.40] [0.59; 1.43] [0.58; 1.40] [0.55; 1.39] [0.54; 1.38] [0.54; 1.40]

(0.83) (0.84) (0.82) (0.84) (0.84) (0.86)
0.96 0.97 0.97 0.96 0.95 0.95

SBM �2
� = 0.50 [-0.17;1.20] [0.12;1.16] [0.06;1.03] [0.02;1.45] [0.04;1.77] [ 0.04; 1.75]

(1.37) (1.04) (0.97) (1.43) (1.73) (1.71)
0.93 0.97 0.93 0.96 0.99 0.99

�2
� = 0.03 [-0.01;0.07] [0.01;0.09] [0.01;0.08] [0.00;0.08] [0.00;0.10] [0.00;0.10]

(0.08) (0.08) (0.07) (0.08) (0.09) (0.10)
0.82 0.96 0.95 0.89 0.98 0.98

�2
! = 0.10 [-0.01;0.21] [0.06;0.26] [0.05;0.22] [0.01;0.23] [0.02;0.26] [ 0.02; 0.27]

(0.22) (0.20) (0.17) (0.22) (0.24) (0.25)
0.87 0.95 0.96 0.89 0.95 0.95

�2
� = 1.00 [0.32;1.60] [0.50;1.52] [0.60;1.66] [0.28; 1.82] [0.24;1.81] [0.23; 1.77]

(1.28) (1.02) (1.06) (1.54) (1.57) (1.54)
0.91 0.97 0.94 0.96 0.96 0.96

Obs.: Numbers in square brackets are the limits of the intervals, in round brackets are the width and in
bold are the coverage rates of the intervals.

are generally better. It can be also noted that the asymptotic interval gives
negative values for the lower limits of the intervals, as in the �2

� case, which is
not desirable once they are variance components. For the SBM, the credibil-
ity intervals present, in general, the best combination of smaller width for the
intervals and coverage rates closer to the 0.95 fixed point. In some cases the
BC and BCa intervals are close to the 0.95 point, with acceptable width, as
in the �2

! case. Once again, the asymptotic intervals present negative values
for the inferior limits, except for �2

� .

5 Real data application

The Local Level Model (LLM) was fitted to an electric time series in
the Northeast region of Brazil. These data were obtained from a large study
concerning the quantity of energy necessary to answer the maximum demand
in the peak interval (from 6:00 to 9:00 pm). The series are monthly obser-
vations of electric consumption from CHESF (São Francisco Hydroelectric
Company), in the period from Jan 1983 to Feb 1997 (n = 170).
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The data are shown in Figure 3 and the series does not seem to present
seasonality nor a change in the level, so that LLM can be selected to model
the data.

Months

1984 1986 1988 1990 1992 1994 1996

0
50

10
0

15
0

20
0

Figure 3: Electric Energy Consumption of CHESF. Values were divided by
10.

The hyperparameters of the LLM were estimated using the software Ox
(Doornik (1999)). The estimates under classical and Bayesian perspectives
are in Table 5. According to the simulations performed in Section 4, better
results for the �2

� component are obtained with the MLE and posterior me-
dian with Jeffreys prior, while there is no substantial difference among the
methods for �2

� . Thus, these hyperparameters can be estimated as �̂2
�
∼= 12.4

and �̂2
�
∼= 32, providing a signal-to-noise ratio estimate equal to 0.4. A resid-

ual analysis was carried out and no evidence of correlation across time in the
error term was found.

Table 6 shows the interval estimates for hyperparameters �2
� and �

2
� . Con-

cerning �2
�, the simulation results showed that the Jeffreys credibility interval

should be prefered, thus the estimated interval for �2
� can be calculated as

[6.30; 22.96]. With respect to �2
� , BC and BCa intervals were slightly better,

so an interval for �2
� can be set as [22.17; 42.06]. As the zero is not included

in the intervals, the LLM can be an adequate model for this series.

20



Table 5: Maximum likelihood and Bayesian estimates for the hyperparame-
ters of CHESF series.

 ̂ MLE BE-Median BE-Mode BE-Mean BE-Median BE-Mean
Jeffreys prior Uniform prior

�̂2
� 12.48 12.34 11.44 12.85 13.75 14.36
�̂2
� 31.85 31.51 31.83 32.32 31.69 32.08

Table 6: Confidence and credibility intervals for the hyperparameters of
CHESF series with nominal level of 95%.

Intervals �2
� �2

�

Asymp [5.03; 19.93] [21.76; 41.94]
Cred.Unif [7.29; 24.92] [22.23; 43.51]
Cred.Jeff [6.30; 22.96] [22.54; 44.55]
Perc [6.05; 20.60] [22.27; 42.63]
BC [6.54; 21.47] [22.17; 42.06]
BCa [6.53; 21.45] [22.17; 42.05]

6 Concluding remarks

The modelling of a time series using non-observable components can be
done mainly using two distinct approaches. Following the classical point
of view, the method is called structural model and the maximum likeli-
hood (MLE) procedure is used to estimate the hyperparameters. Under
the Bayesian approach, the procedure is called dynamic linear model and
Markov Chain Monte Carlo methods are used to approximate the posterior
distribution of the hyperparameters.

In this work, the performances of these two procedures have been em-
pirically investigated, by estimating the variances of the errors of the non-
observable components in structural models. Through some Monte Carlo
experiments, the bias and mean square error (mse) of the estimators were
calculated. For the Bayesian estimators, the posterior mean, median and
mode were the chosen estimators. The results showed that, in general, the
maximum likelihood approach and the posterior mode are less biased and
they have smaller mse.

Confidence (bootstrap and asymptotic) and credibility intervals for the
hyperparameters were also built and compared with respect to the width
and coverage percentages. The bootstrap confidence intervals used were the
percentile, the bias corrected and the bias corrected and accelerated. The
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credibility intervals showed, in general, a better combination of width and
coverage rate. It should be stressed that the asymptotic intervals can present
boundary problems, leading to negative lower limits, what should not be
expected, as in this case the hyperparameters are the variances of the error
terms.

The methodology was also applied to a real series of the São Francisco
Hydroeletric Company (CHESF) from Brazil. Maximum likelihood and
Bayesian estimators were calculated, as well as confidence and credibility
intervals. The results led to the conclusion that the series follow a LLM.

Future research includes the construction of hypothesis tests to verify the
significance of the components in the structural model.
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